数据分析python有趣_Python有趣|数据分析三板斧

2024-03-08 07:20

本文主要是介绍数据分析python有趣_Python有趣|数据分析三板斧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

128e5b9fd92f

前言

天下武功中,哪个是最简单,最实用的了?那当然是程咬金的三板斧。传说中,程咬金晚上睡觉,梦见一老神仙,教了他三十六式板斧,这套功夫威力极大,而且招式简单,十分适合程咬金,但是程咬金醒来之后就只记住了三招,便有了这三板斧。就是这简单的三板斧,帮助李世民建立大唐江山。

这个教程将以简单,有效,实用为原则,让大家也能简单入门Python数据分析,学会这三板斧,让读者以后在学习数据分析的过程中,少走弯路。

Python数据分析流程

用Python做数据分析的优点就是,通过一个pandas库就能完成整个数据分析流程。简单的流程是,一读二看三处理四分析五展示,skr~。如下图所示。

PS:所有数据分析不以业务为依托,都是耍流氓~

128e5b9fd92f

读取数据

这里以全球星巴克的数据为例(https://www.kaggle.com/starbucks/store-locations),首先提出问题(前文说过要以业务为基础,这里我们只能提前定义几个感兴趣的问题),哪些国家星巴克店铺较多;哪些城市星巴克店铺较多;中国星巴克店铺分布情况。

首先通过read_csv读取数据,将文件转换为DataFrame格式,这样我们就可以在Python中进行处理。当然,pandas支持各种文件格式(read_excel,read_sql等等),做详细系列的时候逐一讲解。

import numpy as np

import pandas as pd

data = pd.read_csv('directory.csv')

data.head()

128e5b9fd92f

查看数据

我们可以通过describe和info方法对整个数据有个大概的情况。describe用于查看数值型数据的分布情况。

data.describe()

128e5b9fd92f

info方法用于查看各字段的数据类型,以及缺失情况,可用于后面的数据处理。这里我们根据问题,对country和city字段感兴趣,然后发现city缺失,所以后文中需要对其处理。

data.info()

128e5b9fd92f

数据处理

数据处理,其实就是我们常说的数据预处理(清洗数据),我们都知道,数据大部分情况下,是不干净的(或者不是我们预期的),我们需要处理,清洗,常出现的处理任务如下:

缺失值处理

异常值处理

重复值处理

多表处理

数据转换处理

这些都是需要根据实际情况来处理的。接着,我们就来处理星巴克数据,首先,查看Brand字段的唯一值,发现除了星巴克还有其他商品(可能是同一厂商的,屌丝表示对星巴克一无所知),我们只取星巴克的数据。

128e5b9fd92f

之前我们用info函数可以查看缺失值,但是我们常用isnull函数,这样可以清楚看出各字段的缺失值都有多少数据。

data.isnull().sum()

128e5b9fd92f

因为对city字段感兴趣,所以我们查看到底缺失的数据,是哪些,我们可以看出,大部分是埃及的国家(是不是这些国家没有划分城市,还是说没有录入数据)。

data[data['City'].isnull()]

128e5b9fd92f

接着,我们就处理这些缺失值。缺失值一般的处理方法有两种:

删掉

填充

这里我们选择就用国家字段填充到City字段上。

def fill_na(x):

return x

data['City'] = data['City'].fillna(fill_na(data['State/Province']))

data[data['Country']=='EG']

在数据分析中,我发现小美国的数据把台湾当做了国家,这我能忍么?直接重新赋值,换成了中国(中国一点都不能少)。整个的数据处理就到这了。

data['Country'][data['Country'] == 'TW'] = 'CN'

分析+可视化

在python数据分析中,我常常会把分析和可视化结合在一起,首先我们看看哪些国家星巴克店最多。

通过值计数,看看前10个国家。当然,数据分析中也会有各种方法:

值计数

数据分组聚合

透视表

country_count = data['Country'].value_counts()[0:10]

接着,我们就用pandas可视化(后两期再介绍功能更强大的可视化方法)。可以看出:美国和中国的是最多的。

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['simhei'] #指定默认字体

plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题

%matplotlib inline

country_count.plot(kind='bar')

128e5b9fd92f

接着同样的方法,看看哪些城市的星巴克最多?默默发现,上海市最多(竟然不是美国城市),果然中国市场很大嘛。

128e5b9fd92f

最后,筛选出中国地区的数据,看看中国城市的星巴克数量排名。上海最多,北京第二,上榜的也可以看出都是经济较发达的城市~

china_data = data[data['Country'] == 'CN']

city_count = china_data['City'].value_counts()[0:10]

city_count.plot(kind='barh')

128e5b9fd92f

今日互动

留言打卡:今天的三板斧学会了么。公众号后台回复【入群】,加入Python学习群,2019年一起搞事情。

上次送的书,抽奖结果出来了。请以下五位幸运读者微信私信我(姓名,电话号码和详细地址),不是我好友的赶快加我微信(799407181)。

128e5b9fd92f

128e5b9fd92f

这篇关于数据分析python有趣_Python有趣|数据分析三板斧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786409

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(