Python 中实现 CDF 累积分布图的两种方法

2024-03-07 21:36

本文主要是介绍Python 中实现 CDF 累积分布图的两种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是累积分布

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(Cumulative Distribution Function)标记。
《百度百科》

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(CumulativeDistributionFunction)标记。累积分布图(distribution diagram)是在一组依大小顺序排列的测量值中,当按一定的组即分组时出现测量值小于某个数值的频数或额率对组限的分布图。

简单理解:就是所有 x 左边的值都会落在对应 y 值的概率里。

第一种方法

使用 seaborn 的 ecdfplot 方法, 代码如下:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
# 使用sns.distplot()来计算并绘制CDF
sns.ecdfplot(data=df, legend=True)
plt.grid()
# 显示图形
plt.show()  

得到的 CDF 图形:

CDF by sns

第二种方法

使用 scipy 的 mquantiles 计算

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats.mstats import mquantiles
from matplotlib.ticker import PercentFormatterdef cdf_by_data(df, mark, title):fig, ax = plt.subplots()y = np.arange(0, 1, 0.01)x = mquantiles(df, y)ax.plot(x, y)ax.set_title(title + " - CDF")ax.axvline(x=mark, color='r', linestyle='--', label=str(mark))ax.yaxis.set_major_formatter(PercentFormatter(1))ax.set_xlabel(title)ax.set_ylabel('probability')index = np.abs(x - mark).argmin()plt.plot(mark, y[index], 'o', color='g')ax.text(mark + 1, y[index], "({}, {}%)".format(mark, round(y[index] * 100)), color='r')plt.grid(True)# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
cdf_by_data(df=df, mark=0, title='cdf of data')
plt.grid()
# 显示图形
plt.show()  

得到的图形如下:
CDF by scipy

这篇关于Python 中实现 CDF 累积分布图的两种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784900

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.