Python 中实现 CDF 累积分布图的两种方法

2024-03-07 21:36

本文主要是介绍Python 中实现 CDF 累积分布图的两种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是累积分布

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(Cumulative Distribution Function)标记。
《百度百科》

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(CumulativeDistributionFunction)标记。累积分布图(distribution diagram)是在一组依大小顺序排列的测量值中,当按一定的组即分组时出现测量值小于某个数值的频数或额率对组限的分布图。

简单理解:就是所有 x 左边的值都会落在对应 y 值的概率里。

第一种方法

使用 seaborn 的 ecdfplot 方法, 代码如下:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
# 使用sns.distplot()来计算并绘制CDF
sns.ecdfplot(data=df, legend=True)
plt.grid()
# 显示图形
plt.show()  

得到的 CDF 图形:

CDF by sns

第二种方法

使用 scipy 的 mquantiles 计算

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats.mstats import mquantiles
from matplotlib.ticker import PercentFormatterdef cdf_by_data(df, mark, title):fig, ax = plt.subplots()y = np.arange(0, 1, 0.01)x = mquantiles(df, y)ax.plot(x, y)ax.set_title(title + " - CDF")ax.axvline(x=mark, color='r', linestyle='--', label=str(mark))ax.yaxis.set_major_formatter(PercentFormatter(1))ax.set_xlabel(title)ax.set_ylabel('probability')index = np.abs(x - mark).argmin()plt.plot(mark, y[index], 'o', color='g')ax.text(mark + 1, y[index], "({}, {}%)".format(mark, round(y[index] * 100)), color='r')plt.grid(True)# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
cdf_by_data(df=df, mark=0, title='cdf of data')
plt.grid()
# 显示图形
plt.show()  

得到的图形如下:
CDF by scipy

这篇关于Python 中实现 CDF 累积分布图的两种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784900

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.