基于LFM的重叠社区发现算法python代码实现

2024-03-06 15:48

本文主要是介绍基于LFM的重叠社区发现算法python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于LFM的重叠社区发现算法python代码实现

import random
import networkx as nx
import matplotlib.pyplot as plt
import zipfile
#import urllib.request as urllib
class Community():''' use set operation to optimize calculation '''def __init__(self,G,alpha=1.0):self._G = Gself._alpha = alphaself._nodes = set()self._k_in = 0self._k_out = 0def add_node(self,node):neighbors = set(self._G.neighbors(node))#print("添加令居节点",neighbors , self._nodes,neighbors & self._nodes)node_k_in = len(neighbors & self._nodes)#neighbor和self._nodes公有节点的数目存入node_k_in#print("node_k_in",node_k_in)node_k_out = len(neighbors) - node_k_in#print("node_k_out",node_k_out)self._nodes.add(node)self._k_in += 2*node_k_inself._k_out = self._k_out+node_k_out-node_k_indef remove_node(self,node):neighbors = set(self._G.neighbors(node))community_nodes = self._nodes#print("community_nodes",community_nodes)node_k_in = len(neighbors & community_nodes)node_k_out = len(neighbors) - node_k_inself._nodes.remove(node)self._k_in -= 2*node_k_inself._k_out = self._k_out - node_k_out+node_k_indef cal_add_fitness(self,node):#fitness适应度neighbors = set(self._G.neighbors(node))old_k_in = self._k_inold_k_out = self._k_outvertex_k_in = len(neighbors & self._nodes)#vertex顶点vertex_k_out = len(neighbors) - vertex_k_in new_k_in = old_k_in + 2*vertex_k_innew_k_out = old_k_out + vertex_k_out-vertex_k_innew_fitness = new_k_in/(new_k_in+new_k_out)**self._alpha#幂次old_fitness = old_k_in/(old_k_in+old_k_out)**self._alphareturn new_fitness-old_fitnessdef cal_remove_fitness(self,node):neighbors = set(self._G.neighbors(node))new_k_in = self._k_innew_k_out = self._k_outnode_k_in = len(neighbors & self._nodes)node_k_out = len(neighbors) - node_k_inold_k_in = new_k_in - 2*node_k_inold_k_out = new_k_out - node_k_out + node_k_inold_fitness = old_k_in/(old_k_in+old_k_out)**self._alpha new_fitness = new_k_in/(new_k_in+new_k_out)**self._alphareturn new_fitness-old_fitnessdef recalculate(self):for vid in self._nodes:fitness = self.cal_remove_fitness(vid)if fitness < 0.0:return vidreturn Nonedef get_neighbors(self):neighbors = set()for node in self._nodes:neighbors.update(set(self._G.neighbors(node)) - self._nodes)return neighborsdef get_fitness(self):return float(self._k_in)/((self._k_in+self._k_out) ** self._alpha)class LFM():def __init__(self, G, alpha):self._G = Gself._alpha = alphadef execute(self):communities = []print("嘿嘿",list(self._G.node.keys()))print("---------------------")node_not_include = list(self._G.node.keys())while(len(node_not_include) != 0):c = Community(self._G, self._alpha)#print("self._alpha",self._alpha)#0.9# randomly select a seed nodeseed = random.choice(node_not_include)c.add_node(seed)print("随机选取节点是:",seed)to_be_examined = c.get_neighbors()print("c.get_neighbors()",c.get_neighbors())while(to_be_examined):#largest fitness to be addedm = {}for node in to_be_examined:fitness = c.cal_add_fitness(node)#计算点的适应度》0加入,小于0删除m[node] = fitnessto_be_add = sorted(m.items(),key=lambda x:x[1],reverse = True)[0]#啥意思???#适应度降序排列#stop conditionif(to_be_add[1] < 0.0):breakc.add_node(to_be_add[0])to_be_remove = c.recalculate()while(to_be_remove != None):c.remove_node(to_be_remove)to_be_remove = c.recalculate()to_be_examined = c.get_neighbors()for node in c._nodes:if(node in node_not_include):node_not_include.remove(node)communities.append(c._nodes)return communitiesif(__name__ == "__main__"):#G = nx.karate_club_graph()#一个边集一个点集# G = nx.florentine_families_graph()zf = zipfile.ZipFile('football.zip')  # zipfile objecttxt = zf.read('football.txt').decode()  # read info filegml = zf.read('football.gml').decode()  # read gml data# throw away bogus first line with # from mejn filesgml = gml.split('\n')[1:]G = nx.parse_gml(gml)  # parse gml dataprint(txt)# print degree for each team - number of gamesfor n, d in G.degree():print('%s %d' % (n, d))options = {'node_color': 'red','node_size': 50,'line_color': 'grey','linewidths': 0,'width': 0.1,}nx.draw(G, **options)#networkx.draw(G, with_labels=True)plt.show()algorithm = LFM(G,0.9)communities = algorithm.execute()for c in communities:print (len(c),sorted(c))

社区网络:
初步社区网络结构图
重叠社区划分结果:
社区划分结果

这篇关于基于LFM的重叠社区发现算法python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780544

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详