本文主要是介绍【ProjectEuler】ProjectEuler_049,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
#pragma once#include <windows.h>
#include <vector>
#include <set>using namespace std;class MoonMath
{
public:MoonMath(void);~MoonMath(void);//************************************// Method: IsInt// Access: public// Describe: 判断double值在epsilon的范围内是否很接近整数// 如1.00005在epsilon为0.00005以上就很接近整数// Parameter: double doubleValue 要判断的double值// Parameter: double epsilon 判断的精度,0 < epsilon < 0.5// Parameter: INT32 & intValue 如果接近,返回最接近的整数值// Returns: bool 接近返回true,否则返回false//************************************static bool IsInt(double doubleValue, double epsilon, INT32 &intValue);//************************************// Method: Sign// Access: public// Describe: 获取value的符号// Parameter: T value 要获取符号的值// Returns: INT32 正数、0和负数分别返回1、0和-1//************************************template <typename T>static INT32 Sign(T value);//************************************// Method: IsPrimer// Access: public// Describe: 判断一个数是否是素数// Parameter: UINT32 num 要判断的数// Returns: bool 是素数返回true,否则返回false//************************************static bool IsPrimer(UINT32 num);//************************************// Method: IsIntegerSquare// Access: public static// Describe: 判断给定的数开平方后是否为整数// Parameter: UINT32 num// Returns: bool//************************************static bool IsIntegerSquare(UINT32 num);//************************************// Method: GetDiffPrimerFactorNum// Access: public static// Describe: 获取num所有的不同质因数// Parameter: UINT32 num// Returns: set<UINT32>//************************************static set<UINT32> MoonMath::GetDiffPrimerFactorNum(UINT32 num);
};
#include "MoonMath.h"
#include <cmath>MoonMath::MoonMath(void)
{
}MoonMath::~MoonMath(void)
{
}template <typename T>
INT32 MoonMath::Sign(T value)
{if(value > 0){return 1;}else if(value == 0){return 0;}else{return -1;}
}bool MoonMath::IsInt(double doubleValue, double epsilon, INT32 &intValue)
{if(epsilon > 0.5 || epsilon < 0){return false;}if(INT32(doubleValue + epsilon) == INT32(doubleValue - epsilon)){return false;}INT32 value = INT32(doubleValue);intValue = (fabs(doubleValue - value) > 0.5) ? (value + MoonMath::Sign(doubleValue)) : (value) ;return true;
}bool MoonMath::IsPrimer(UINT32 num)
{// 0和1不是素数if(num <= 1){return false;}UINT32 sqrtOfNum = (UINT32)sqrt((double)num); // num的2次方// 从2到sqrt(num),如果任何数都不能被num整除,num是素数,否则不是for(UINT32 i = 2; i <= sqrtOfNum; ++i){if(num % i == 0){return false;}}return true;
}bool MoonMath::IsIntegerSquare(UINT32 num)
{UINT32 qurtNum = (UINT32)sqrt((double)num);return (qurtNum * qurtNum) == num;
}set<UINT32> MoonMath::GetDiffPrimerFactorNum(UINT32 num)
{UINT32 halfNum = num / 2;set<UINT32> factors;for(UINT32 i = 2; i <= halfNum; ++i){if(!MoonMath::IsPrimer(i)){continue;}if(num % i == 0){factors.insert(i);while(num % i == 0){num /= i;}}}return factors;
}
// Prime permutations
// Problem 49
// The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.
//
// There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.
//
// What 12-digit number do you form by concatenating the three terms in this sequence?#include <iostream>
#include <windows.h>
#include <ctime>
#include <assert.h>#include <MoonMath.h>
using namespace std;// 打印时间等相关信息
class DetailPrinter
{
public:void Start();void End();DetailPrinter();private:LARGE_INTEGER timeStart;LARGE_INTEGER timeEnd;LARGE_INTEGER freq;
};DetailPrinter::DetailPrinter()
{QueryPerformanceFrequency(&freq);
}//************************************
// Method: Start
// Access: public
// Describe: 执行每个方法前调用
// Returns: void
//************************************
void DetailPrinter::Start()
{QueryPerformanceCounter(&timeStart);
}//************************************
// Method: End
// Access: public
// Describe: 执行每个方法后调用
// Returns: void
//************************************
void DetailPrinter::End()
{QueryPerformanceCounter(&timeEnd);cout << "Total Milliseconds is " << (double)(timeEnd.QuadPart - timeStart.QuadPart) * 1000 / freq.QuadPart << endl;const char BEEP_CHAR = '\007';cout << endl << "By GodMoon" << endl << __TIMESTAMP__ << BEEP_CHAR << endl;system("pause");
}/*************************解题开始*********************************///************************************
// Method: GetDigitMap
// Access: public
// Describe: 获取num包含的数字map
// Parameter: UINT32 num
// Parameter: UINT16 & digitMap 返回的num的数字map
// Returns: bool 如果包含重复的数字,返回false,否则返回true
//************************************
bool GetDigitMap(UINT32 num, UINT16 &digitMap)
{UINT32 digit = 0;digitMap = 0;while(num != 0){digit = num % 10;num /= 10;// 数字已存在,返回falseif(digitMap & (1 << digit) == 1){return false;}digitMap |= (1 << digit);}return true;
}//************************************
// Method: IsSameDigitNum
// Access: public
// Describe: 判断N个数字是否都是由相同的数字组成,每个数字都必须包含不同的数字
// Parameter: UINT32 num1
// Parameter: UINT32 num2
// Returns: bool
//************************************
bool IsSameDigitNum(const UINT32 nums[], UINT32 numCount)
{UINT16 lastDigitMap = 0;UINT16 currDigitMap = 0;if(numCount <= 2){return false;}if(!GetDigitMap(nums[0], lastDigitMap)){return false;}for(UINT32 i = 1; i < numCount; ++i){if(!GetDigitMap(nums[i], currDigitMap)){return false;}if(currDigitMap != lastDigitMap){return false;}}return true;
}void TestFun1()
{cout << "Test OK!" << endl;
}void F1()
{cout << "void F1()" << endl;// TestFun1();DetailPrinter detailPrinter;detailPrinter.Start();/*********************************算法开始*******************************/const UINT32 START_NUM = 1000;const UINT32 END_NUM = 9999;const UINT32 SKIP_NUM=1487; // 排除已有的数字UINT32 maxAddNum = 0;UINT32 nums[3];bool notFound = true;UINT32 addNum;UINT32 num;for(num = START_NUM; num <= END_NUM && notFound; ++num){maxAddNum = (END_NUM - num) / 2;nums[0] = num;if(!MoonMath::IsPrimer(num)){continue;}if (num==SKIP_NUM){continue;}for(addNum = 1; addNum <= maxAddNum; ++addNum){nums[1] = num + addNum;nums[2] = num + addNum * 2;if(IsSameDigitNum(nums, ARRAYSIZE(nums))&& MoonMath::IsPrimer(nums[1])&& MoonMath::IsPrimer(nums[2])){notFound = false;break;}}}cout << "The 12-digit number is " << nums[0] << nums[1] << nums[2] << endl;/*********************************算法结束*******************************/detailPrinter.End();
}//主函数
int main()
{F1();return 0;
}/*
void F1()
The 12-digit number is 296962999629
Total Milliseconds is 202.389By GodMoon
Wed Mar 13 20:54:30 2013
*/
这篇关于【ProjectEuler】ProjectEuler_049的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!