LeNet5实战——衣服分类

2024-03-06 11:36
文章标签 实战 分类 衣服 lenet5

本文主要是介绍LeNet5实战——衣服分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 搭建模型
  • 训练代码(数据处理、模型训练、性能指标)——> 产生权重w ——>模型结构c、w
  • 测试

配置环境

Pycharm刚配置的环境找不到了-CSDN博客

model.py

导入库

import torch  
from torch import nn  
from torchsummary import summary

模型搭建

 note:

  • stride 步幅为1,和默认值一样,不用写
  • padding=0,和默认一样不用写

代码

import torch  
from torch import nn  
from torchsummary import summary  class LeNet(nn.Module):  #初始化  def __init__(self):  super(LeNet,self).__init__()  self.c1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5,padding=2)  self.sig=nn.Sigmoid()  self.s2=nn.AvgPool2d(kernel_size=2,stride=2)  self.c3=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)  self.s4=nn.AvgPool2d(kernel_size=2,stride=2)  self.flatten=nn.Flatten()  self.f5 = nn.Linear(in_features=400,out_features=120)  self.f6 = nn.Linear(in_features=120, out_features=84)  self.f7 = nn.Linear(in_features=84, out_features=10)  def forward(self,x):  x = self.sig(self.c1(x))#经过卷积和激活  x=self.s2(x)  x=self.sig(self.c3(x))  x=self.s4(x)  x=self.flatten(x)  x=self.f5(x)  x=self.f6(x)  x=self.f7(x)  return x  if __name__=="__main__":  device = torch.device("cuda" if torch.cuda.is_available()else "cpu")  print(device)  model = LeNet().to(device)#实例化  print(summary(model,input_size=(1,28,28)))

前向传播结果

plot.py

模型加载

下载数据集

打包数据

为什么要移除一维? 

因为之前将数据打包成64一组,数据格式为64 *28 * 28 * 1,把64移除,剩下的28* 28 * 1就是图片格式

 获取图片数据

 可视化数据(图片)

代码

from torchvision.datasets import FashionMNIST  
from torchvision import transforms#处理数据集  
import torch.utils.data as Data  
import numpy as np  
import matplotlib.pyplot as plt  
from model import LeNet # 导入模型(没有训练的模型)  def train_val_data_process():  train_data = FashionMNIST(root='./data',  train=True,  transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),  # 转换成张量形式方便应用  download=True)  train_data,val_data = Data.random_split(train_data,lengths=(round(0.8*len(train_data)),round(0.2*len(train_data))))#随机划分数据  train_dateloader = Data.DataLoader(dataset=train_data,  batch_size=128,  shuffle=True,  num_workers=8)#进程  val_dateloader = Data.DataLoader(dataset=val_data,  batch_size=128,  shuffle=True,  num_workers=8)  return train_dateloader,val_dateloader  

可视化结果

一批次的图片(64张)

model_train.py

导入库

import copy  
import time  import torch  
from torchvision.datasets import FashionMNIST  
from torchvision import transforms  # 处理数据集  
import torch.utils.data as Data  
import numpy as np  
import matplotlib.pyplot as plt  
from model import LeNet  # 导入模型(没有训练的模型)  
import torch.nn as nn  
import pandas as pd
  • FashionMNIST数据集由Zalando研究团队创建,包含了10个不同类别的灰度图像。每个图像的尺寸为28x28像素,共有训练集和测试集两部分。(衣服分类数据集)
  • transforms模块提供了一种方便的方式来对图像数据进行常见的预处理操作,如缩放、裁剪、旋转、翻转、标准化等。它还可以用于将图像数据转换为张量(Tensor)格式,并根据需要进行其他转换操作。
  • torch.utils.data是PyTorch中的一个模块,提供了用于数据加载和预处理的工具类和函数。它提供了一种方便的方式来处理和准备数据,以供机器学习模型的训练和评估使用。torch.utils.data模块中的两个重要类是DatasetDataLoader
  • torch.nn模块包含了许多常用的神经网络层类,提供了各种损失函数。
  • pandas是一个功能强大且灵活的数据处理和分析库,它提供了高性能、易于使用的数据结构和数据分析工具

train_val_data_process()

代码

def train_val_data_process():  train_data = FashionMNIST(root='./data',  train=True,  transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),  # 转换成张量形式方便应用  download=True)  train_data, val_data = Data.random_split(train_data, lengths=(  round(0.8 * len(train_data)), round(0.2 * len(train_data))))  # 随机划分数据  train_dataloader = Data.DataLoader(dataset=train_data,  batch_size=32,  shuffle=True,  num_workers=2)  # 进程  val_dataloader = Data.DataLoader(dataset=val_data,  shuffle=True,  num_workers=2)  return train_dataloader, val_dataloader

FashinMNIST

FashionMNIST是一个用于图像分类的数据集,包含了10个类别的服装图像。 指定root参数为'./data'train参数为Truetransform参数为一个transforms.Compose对象,以及download参数为True,可以下载并加载FashionMNIST数据集。

transforms.Compose对象是一个数据预处理的组合,这里使用了transforms.Resize将图像大小调整为28×28,并使用transforms.ToTensor将图像转换为张量形式。

Data.random_split

将train_data按照8|2的比例随机划分给train_data和val_data

Data.DataLoader

  • dataset:指定要加载的数据集,这里是train_data,即训练数据集。
  • batch_size:指定每个批次中的样本数量,这里是32,表示每次加载32个样本。
  • shuffle:指定是否在每个迭代周期前打乱数据顺序,这里设置为True,表示在每个迭代周期前打乱数据顺序。
  • num_workers:指定用于数据加载的线程数,这里设置为2,表示使用2个进程进行数据加载。

train_model_process

代码

def train_model_process(model, train_dataloader, val_dataloader, num_epochs):  # 设定训练所用到的设备,有GPU用GPU,没有则用CPU  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 使用Adam优化器,学习率为0.001(adam——优化的梯度下降法)  optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 损失函数为交叉熵函数  criterion = nn.CrossEntropyLoss()  # 将模型放到训练设备中  model = model.to(device)  # 赋值当前模型的参数  best_model_wts = copy.deepcopy(model.state_dict())  # 初始化参数  # 最高精准度  best_acc = 0.0  # 训练集损失函数列表  train_loss_all = []  # 验证集损失函数列表  val_loss_all = []  # 训练集精度列表  train_acc_all = []  # 验证集精度列表  val_acc_all = []  # 当前时间  since = time.time()  for epoch in range(num_epochs):  print("Epoch {}/{}".format(epoch, num_epochs - 1))  print("-" * 10)  # 初始化参数  # 训练集损失函数  train_loss = 0.0  # 训练集准确度  train_corrects = 0  # 验证集损失函数  val_loss = 0.0  # 验证集准确度  val_corrects = 0  # 训练集样本数量  train_num = 0  # 验证集样本数量  val_num = 0  # 对每一个mini-batch训练和计算  for step, (b_x, b_y) in enumerate(train_dataloader):  # 将特征放入到训练设备中  b_x = b_x.to(device)  # 将标签放入到训练设备中  b_y = b_y.to(device)  # 设置模型为训练模式  model.train()  # 前向传播过程,输入为一个batch,输出为一个batch中对应的预测  output = model(b_x)  # 查找每一行中最大值对应的行标  pre_lab = torch.argmax(output, dim=1)  # 模型的输出和标签计算损失函数  loss = criterion(output, b_y)  # 将梯度初始化为0  optimizer.zero_grad()  # 反向传播计算  loss.backward()  # 根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值的作用  optimizer.step()  # 对损失函数进行累加  train_loss += loss.item() * b_x.size(0)  # 如果预测正确,则准确度train_corrects+1  train_corrects += torch.sum(pre_lab == b_y.data)  # 当前用于训练的样本数量  train_num += b_x.size(0)  for step, (b_x, b_y) in enumerate(val_dataloader):  b_x = b_x.to(device)  b_y = b_y.to(device)  # 设置模型为验证模式  model.eval()  output = model(b_x)  pre_lab = torch.argmax(output, dim=1)  loss = criterion(output, b_y)  val_loss += loss.item() * b_x.size(0)  val_corrects += torch.sum(pre_lab == b_y.data)  val_num += b_x.size(0)  # 计算并保存每一次迭代的loss值  train_loss_all.append(train_loss / train_num)  # 计算并保存训练集的准确率  train_acc_all.append(train_corrects.double().item() / train_num)  val_loss_all.append(val_loss / val_num)  val_acc_all.append(val_corrects.double().item() / val_num)  print('{} Train Loss:{:.4f} Train Acc:{:.4f}'.format(epoch, train_loss_all[-1], train_acc_all[-1]))  print('{} Val Loss:{:.4f} Val Acc: {:.4f}'.format(epoch, val_loss_all[-1], val_acc_all[-1]))  # 寻找最高准确度的权重  if val_acc_all[-1] > best_acc:  best_acc = val_acc_all[-1]  best_model_wts = copy.deepcopy(model.state_dict())  # 训练耗时  time_use = time.time() - since  print("训练耗费的时间:{:0f}m{:0f}s".format(time_use // 60, time_use % 60))  # 选择最优参数  # 加载最高准确率下的模型参数  torch.save(best_model_wts, 'E:/CODE/python/LeNet5/best_model.pth')  train_process = pd.DataFrame(data={"epoch": range(num_epochs),  "train_loss_all": train_loss_all,  "val_loss_all": val_loss_all,  "train_acc_all": train_acc_all,  "val_acc_all": val_acc_all})  return train_process

 准备

 一个迭代周期

初始化参数

对一批次的数据进行训练
遍历数据

for循环

for step, (b_x, b_y) in enumerate(train_dataloader): 是一个 for 循环语句的语法结构,用于迭代遍历一个可迭代对象 train_dataloader。 在每次循环迭代中,enumerate(train_dataloader) 将返回一个 (step, (b_x, b_y)) 的元组,其中: step 是当前迭代的索引值,表示当前是第几个迭代步骤。 (b_x, b_y) 是从 train_dataloader 中获取的一个批次的数据。

前向传播

模型的输出和标签计算损失函数

损失函数-----评估模型输出与真实标签之间的差异的函数

反向传播

更新网络并预测判断

 对一批次数据进行验证

注意

验证没有反向传播过程,因为验证数据在训练过程中主要用于评估模型的性能,而不是用于参数更新。在验证阶段,参数更新可能会导致模型在验证集上过拟合,并且会增加计算开销。因此,验证阶段只需要进行前向传播和损失计算,以获取模型在验证集上的性能指标,而不需要进行反向传播和参数更新。

一批次结束,计算并保存损失值和准确率

寻找最高准确度的权重

选择最优参数并返回

matplot_acc_lost

代码

def matplot_acc_lost(train_process):  plt.figure(figsize=(12, 4))  plt.subplot(1, 2, 1)  # 一行两列第一幅图  plt.plot(train_process["epoch"], train_process.train_loss_all, 'ro-', label="train loss")  plt.plot(train_process["epoch"], train_process.val_loss_all, 'bs', label="val loss")  plt.legend()  plt.xlabel("epoch")  plt.ylabel("loss")  plt.subplot(1, 2, 2)  # 一行两列第二幅图  plt.plot(train_process["epoch"], train_process.train_loss_all, 'ro-', label="train loss")  plt.plot(train_process["epoch"], train_process.val_loss_all, 'bs-', label="val loss")  plt.xlabel("epoch")  plt.ylabel("acc")  plt.legend()  plt.show()

 结果

modemodel_test.py

test_data_process

def test_data_process():  test_data = FashionMNIST(root='./data',  train=False,  transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),  # 转换成张量形式方便应用  download=True)  test_dataloader = Data.DataLoader(dataset=test_data,  batch_size=1,  shuffle=True,  num_workers=0)  return test_dataloader

test_model_process

def test_model_process(model, test_dataloader):  device = "cuda" if torch.cuda.is_available() else 'cpu'  model = model.to(device)  test_corrects=0.0  test_num=0  #只进行前向传播计算,不计算梯度,从而节省内存,加快运行速度  with torch.no_grad():  for test_data_x,test_data_y in test_dataloader:  test_data_x=test_data_x.to(device)  test_data_y=test_data_y.to(device)  model.eval()  #前向传播过程,输入为测试数据集,输出为对每个样本的预测值  output=model(test_data_x)  #查找每一行中最大值对应的行标  pre_lab=torch.argmax(output,dim=1)  test_corrects += torch.sum(pre_lab==test_data_y.data)  test_num += test_data_x.size(0)  #计算测试准确率  test_acc=test_corrects.double().item() / test_num  print("测试的准确率为:",test_acc)

 torch.no_grad

torch.no_grad()是一个上下文管理器,用于在代码块中禁用梯度计算和参数更新。当进入torch.no_grad()的上下文中时,PyTorch会自动将requires_grad属性设置为False,从而禁止梯度的计算和参数的更新。

torch.no_grad()常用于评估模型或进行推断过程,不需要计算梯度的情况下,可以提高代码的执行效率并减少内存消耗。

这篇关于LeNet5实战——衣服分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779934

相关文章

React+TS前台项目实战(十七)-- 全局常用组件Dropdown封装

文章目录 前言Dropdown组件1. 功能分析2. 代码+详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲全局Dropdown组件封装,可根据UI设计师要求自定义修改。 Dropdown组件 1. 功能分析 (1)通过position属性,可以控制下拉选项的位置 (2)通过传入width属性, 可以自定义下拉选项的宽度 (3)通过传入classN

雨量传感器的分类和选型建议

物理原理分类 机械降雨量计(雨量桶):最早使用的降雨量传感器,通过漏斗收集雨水并记录。主要用于长期降雨统计,故障率较低。电容式降雨量传感器:基于两个电极之间的电容变化来计算降雨量。当降雨时,水滴堵住电极空间,改变电容值,从而计算降雨量。超声波式降雨量传感器:利用超声波的反射来计算降雨量。适用于大降雨量的场合。激光雷达式降雨量传感器:利用激光技术测量雨滴的速度、大小和形状等参数,并计算降雨量。主

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

MyBatis-Plus常用注解详解与实战应用

MyBatis-Plus 是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。它提供了大量的常用注解,使得开发者能够更方便地进行数据库操作。 MyBatis-Plus 提供的注解可以帮我们解决一些数据库与实体之间相互映射的问题。 @TableName @TableName 用来指定表名 在使用 MyBatis-Plus 实现基本的 C

[大师C语言(第三十六篇)]C语言信号处理:深入解析与实战

引言 在计算机科学中,信号是一种软件中断,它允许进程之间或进程与内核之间进行通信。信号处理是操作系统中的一个重要概念,它允许程序对各种事件做出响应,例如用户中断、硬件异常和系统调用。C语言作为一门接近硬件的编程语言,提供了强大的信号处理能力。本文将深入探讨C语言信号处理的技术和方法,帮助读者掌握C语言处理信号的高级技巧。 第一部分:C语言信号处理基础 1.1 信号的概念 在Unix-lik

多态的分类

多态分为两种:通用的多态和特定的多态。两者的区别是前者对工作的类型不加限制,允许对不同类型的值执行相同的代码;后者只对有限数量的类型有效,而且对不同类型的值可能要执行不同的代码。 1,通用的多态又分为参数多态(parametric)和包含多态(inclusion); (1)参数多态:采用参数化模板,通过给出不同的类型参数,使得一个结构有多种类型。 例如:泛型   (2)包含多

MATLAB算法实战应用案例精讲-【数模应用】三因素方差

目录 算法原理 SPSSAU 三因素方差案例 1、背景 2、理论 3、操作 4、SPSSAU输出结果 5、文字分析 6、剖析 疑难解惑 均方平方和类型? 事后多重比较的类型选择说明? 事后多重比较与‘单独进行事后多重比较’结果不一致? 简单效应是指什么? 边际估计均值EMMEANS是什么? 简单简单效应? 关于方差分析时的效应量? SPSSAU-案例 一、案例

[最全]设计模式实战(一)UML六大原则

UML类图 UML类图是学习设计模式的基础,学习设计模式,主要关注六种关系。即:继承、实现、组合、聚合、依赖和关联。 UML类图基本用法 继承关系用空心三角形+实线来表示。实现接口用空心三角形+虚线来表示。eg:大雁是最能飞的,它实现了飞翔接口。 关联关系用实线箭头来表示。当一个类"知道"另一个类时,可以用关联。eg:企鹅需要"知道"气候的变化,需要"了解"气候规律。 聚合关

【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

文章目录 一、文章概览(一)问题的提出(二)文章工作 二、理论背景(一)密度比估计DRE(二)去噪扩散模型 三、方法(一)推导分类和去噪之间的关系(二)组合训练方法(三)一步精确的似然计算 四、实验(一)使用两种损失对于实现最佳分类器的重要性(二)去噪结果、图像质量和负对数似然 论文:Classification Diffusion Models: Revitalizing