glibc-2.23 puts源码分析

2024-03-06 10:59
文章标签 分析 源码 glibc 2.23 puts

本文主要是介绍glibc-2.23 puts源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在分析puts代码之前先看一些基本的知识:
一些flag:

#define _IO_USER_BUF 1                /* User owns buffer; don't delete it on close. */
#define _IO_UNBUFFERED 2              /* 无缓冲,此时会使用_IO_FILE内部的shortbuf作为缓冲区 */
#define _IO_NO_READS 4                /* Reading not allowed */
#define _IO_NO_WRITES 8               /* Writing not allowd */
#define _IO_EOF_SEEN 0x10             //读到末尾了
#define _IO_ERR_SEEN 0x20             //出错了
#define _IO_DELETE_DONT_CLOSE 0x40    /* Don't call close(_fileno) on cleanup. */
#define _IO_LINKED 0x80               /* Set if linked (using _chain) to streambuf::_list_all.*/
#define _IO_IN_BACKUP 0x100				//不太明白这个
#define _IO_LINE_BUF 0x200            //行缓冲#define _IO_TIED_PUT_GET 0x400        /* Set if put and get pointer logicly tied. */#define _IO_CURRENTLY_PUTTING 0x800   //当前正在输出......什么时候会被设置.  
#define _IO_IS_APPENDING 0x1000       //append fopen的时候mode里面有 + 
#define _IO_IS_FILEBUF 0x2000         //不太明白
#define _IO_BAD_SEEN 0x4000           //出错了.#define _IO_USER_LOCK 0x8000          //有锁????

_IO_FILE结构 :

struct _IO_FILE {int _flags;			/* High-order word is _IO_MAGIC; rest is flags. *///高两字节是固定的magic,低两字节被用来储存flags/* The following pointers correspond to the C++ streambuf protocol. *//* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. *///读相关char* _IO_read_ptr;	/* Current read pointer */char* _IO_read_end;	/* End of get area. */char* _IO_read_base;	/* Start of putback+get area. *///写相关char* _IO_write_base;	/* Start of put area. */char* _IO_write_ptr;	/* Current put pointer. */char* _IO_write_end;	/* End of put area. *///缓冲区char* _IO_buf_base;	/* Start of reserve area. */char* _IO_buf_end;	/* End of reserve area. *//* The following fields are used to support backing up and undo. */ //撤销操作???//什么时候会有撤销操作char *_IO_save_base;    /* Pointer to start of non-current get area. */char *_IO_backup_base;  /* Pointer to first valid character of backup area */char *_IO_save_end;     /* Pointer to end of non-current get area. */struct _IO_marker *_markers;struct _IO_FILE *_chain;      //File 链int _fileno;                  //fd文件描述符
#if 0int _blksize;
#elseint _flags2;                  //
#endif_IO_off_t _old_offset; /* This used to be _offset but it's too small.  */#define __HAVE_COLUMN /* temporary *//* 1+column number of pbase(); 0 is unknown. */unsigned short _cur_column;     //signed char _vtable_offset;     //虚表偏移char _shortbuf[1];              //无缓冲的时候要用这个作为缓冲区./*  char* _save_gptr;  char* _save_egptr; */_IO_lock_t *_lock;              //🔒
#ifdef _IO_USE_OLD_IO_FILE
};

vtable:

#ifdef _LIBC
versioned_symbol (libc, _IO_new_do_write, _IO_do_write, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_attach, _IO_file_attach, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_close_it, _IO_file_close_it, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_finish, _IO_file_finish, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_fopen, _IO_file_fopen, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_init, _IO_file_init, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_setbuf, _IO_file_setbuf, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_sync, _IO_file_sync, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_overflow, _IO_file_overflow, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_seekoff, _IO_file_seekoff, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_underflow, _IO_file_underflow, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_write, _IO_file_write, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_xsputn, _IO_file_xsputn, GLIBC_2_1);
#endifconst struct _IO_jump_t _IO_file_jumps =
{JUMP_INIT_DUMMY,JUMP_INIT(finish, _IO_file_finish),JUMP_INIT(overflow, _IO_file_overflow),JUMP_INIT(underflow, _IO_file_underflow),JUMP_INIT(uflow, _IO_default_uflow),JUMP_INIT(pbackfail, _IO_default_pbackfail),JUMP_INIT(xsputn, _IO_file_xsputn),JUMP_INIT(xsgetn, _IO_file_xsgetn),JUMP_INIT(seekoff, _IO_new_file_seekoff),JUMP_INIT(seekpos, _IO_default_seekpos),JUMP_INIT(setbuf, _IO_new_file_setbuf),JUMP_INIT(sync, _IO_new_file_sync),JUMP_INIT(doallocate, _IO_file_doallocate),JUMP_INIT(read, _IO_file_read),JUMP_INIT(write, _IO_new_file_write),JUMP_INIT(seek, _IO_file_seek),JUMP_INIT(close, _IO_file_close),JUMP_INIT(stat, _IO_file_stat),JUMP_INIT(showmanyc, _IO_default_showmanyc),JUMP_INIT(imbue, _IO_default_imbue)
};

puts函数
在这里插入图片描述
接着puts函数进入了_IO_sputn,看一下它的定义
在这里插入图片描述
是调用了vtable里面的 xsputn函数,从上面的那个结构体初始化可以看出,就是_IO_file_xsputn函数,也就是_IO_new_file_xsputn函数

转到_IO_new_file_xsputn函数看一下:

_IO_size_t _IO_new_file_xsputn (_IO_FILE *f, const void *data, _IO_size_t n)
{const char *s = (const char *) data;_IO_size_t to_do = n;             //to_do是剩余要输出的长度int must_flush = 0;               //标是否要输出缓冲区内容_IO_size_t count = 0;             //输出缓冲区剩余部分大于 所要输出的长度if (n <= 0)return 0;if ((f->_flags & _IO_LINE_BUF) && (f->_flags & _IO_CURRENTLY_PUTTING)){count = f->_IO_buf_end - f->_IO_write_ptr;//看一下缓冲区剩余的空间还有多少,如果无法把data拷贝进去,那么会输出缓冲区内容,//这里是看一下把data可以全部拷贝到缓冲区的情况,若指定了行缓冲,那么就找一下是否存在\n,//存在的话就需要flush 输出缓冲区。if (count >= n){const char *p;for (p = s + n; p > s; ){if (*--p == '\n'){count = p - s + 1;must_flush = 1;break;}}}}else if (f->_IO_write_end > f->_IO_write_ptr)count = f->_IO_write_end - f->_IO_write_ptr; /* Space available. *//* Then fill the buffer. */if (count > 0){if (count > to_do)                      //先尽可能的把数据拷贝到缓冲区count = to_do;
#ifdef _LIBCf->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count);
#elsememcpy (f->_IO_write_ptr, s, count);f->_IO_write_ptr += count;            
#endifs += count;to_do -= count;}if (to_do + must_flush > 0)                         //还有数据没有拷贝到缓冲区或者遇到了行缓冲,这时需要flush缓冲区,{_IO_size_t block_size, do_write;/* Next flush the (full) buffer. */if (_IO_OVERFLOW (f, EOF) == EOF)                  //flush 缓冲区,并且重置write_base,write_ptr,write_end指针./* If nothing else has to be written we must not signal thecaller that everything has been written.  */return to_do == 0 ? EOF : n - to_do;/* Try to maintain alignment: write a whole number of blocks.  */block_size = f->_IO_buf_end - f->_IO_buf_base;do_write = to_do - (block_size >= 128 ? to_do % block_size : 0);//block_size = 128;//剩余部分的大小 拆成 block_size * k + r.//do_write = block_size * kif (do_write){count = new_do_write (f, s, do_write);          //大块输出,直接sys_write.to_do -= count;if (count < do_write)return n - to_do;}//除去整块大小剩余的部分,调用_IO_default_xsputn if (to_do)to_do -= _IO_default_xsputn (f, s+do_write, to_do); //把剩余的r 输出,(一定是小于 block_size )}return n - to_do;
}

代码逻辑比较简单,这里就不多说明了。
该函数里面调用了三个函数:

	_IO_OVERFLOW (f, EOF) == EOFnew_do_write (f, s, do_write);_IO_default_xsputn (f, s+do_write, to_do);

继续分析这三个函数:

_IO_OVERFLOW :
这个实际上是调用了_IO_file_overflow函数,代码里面的名称是_IO_new_file_overflow,
可以由函数名大概猜出,该函数的就是用于当输出缓冲区满了的时候,继续写会溢出,所以要flush输出缓冲区,同样还有_IO_file_underflow函数是read时候缓冲区内容不够,重新往缓冲区读入数据

//溢出.
int _IO_new_file_overflow (_IO_FILE *f, int ch)
{//如果不可写的话直接返回,这个是flag是根据打开文件的方式而设置的if (f->_flags & _IO_NO_WRITES) /* SET ERROR */{f->_flags |= _IO_ERR_SEEN;__set_errno (EBADF);return EOF;}///* If currently reading or no buffer allocated. */if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL){//这里目前还不太明白什么时候会调用他.........../* Allocate a buffer if needed. */if (f->_IO_write_base == NULL){_IO_doallocbuf (f);_IO_setg (f, f->_IO_buf_base, f->_IO_buf_base, f->_IO_buf_base);}/* Otherwise must be currently reading.If _IO_read_ptr (and hence also _IO_read_end) is at the buffer end,logically slide the buffer forwards one block (by setting theread pointers to all point at the beginning of the block).  Thismakes room for subsequent output.Otherwise, set the read pointers to _IO_read_end (leaving thatalone, so it can continue to correspond to the external position). */if (__glibc_unlikely (_IO_in_backup (f))){size_t nbackup = f->_IO_read_end - f->_IO_read_ptr;_IO_free_backup_area (f);f->_IO_read_base -= MIN (nbackup,f->_IO_read_base - f->_IO_buf_base);f->_IO_read_ptr = f->_IO_read_base;}if (f->_IO_read_ptr == f->_IO_buf_end)f->_IO_read_end = f->_IO_read_ptr = f->_IO_buf_base;f->_IO_write_ptr = f->_IO_read_ptr;f->_IO_write_base = f->_IO_write_ptr;f->_IO_write_end = f->_IO_buf_end;f->_IO_read_base = f->_IO_read_ptr = f->_IO_read_end;f->_flags |= _IO_CURRENTLY_PUTTING;if (f->_mode <= 0 && f->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))f->_IO_write_end = f->_IO_write_ptr;}if (ch == EOF)return _IO_do_write (f, f->_IO_write_base,f->_IO_write_ptr - f->_IO_write_base);//把缓冲区现有的数据输出.if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */if (_IO_do_flush (f) == EOF)return EOF;*f->_IO_write_ptr++ = ch;if ((f->_flags & _IO_UNBUFFERED)|| ((f->_flags & _IO_LINE_BUF) && ch == '\n'))if (_IO_do_write (f, f->_IO_write_base,f->_IO_write_ptr - f->_IO_write_base) == EOF)return EOF;return (unsigned char) ch;
}

_IO_do_write代码:


int _IO_new_do_write (_IO_FILE *fp, const char *data, _IO_size_t to_do)
{return (to_do == 0|| (_IO_size_t) new_do_write (fp, data, to_do) == to_do) ? 0 : EOF;
}static _IO_size_t new_do_write (_IO_FILE *fp, const char *data, _IO_size_t to_do)
{_IO_size_t count;if (fp->_flags & _IO_IS_APPENDING)fp->_offset = _IO_pos_BAD;else if (fp->_IO_read_end != fp->_IO_write_base){_IO_off64_t new_pos = _IO_SYSSEEK (fp, fp->_IO_write_base - fp->_IO_read_end, 1);if (new_pos == _IO_pos_BAD) return 0;fp->_offset = new_pos;}count = _IO_SYSWRITE (fp, data, to_do);if (fp->_cur_column && count)fp->_cur_column = _IO_adjust_column (fp->_cur_column - 1, data, count) + 1;_IO_setg (fp, fp->_IO_buf_base, fp->_IO_buf_base, fp->_IO_buf_base);fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_buf_base;fp->_IO_write_end = (fp->_mode <= 0&& (fp->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))? fp->_IO_buf_base : fp->_IO_buf_end);return count;
}

_IO_default_xsputn 代码 (这个函数会把数据拷贝到缓冲区,然后在缓冲区满的时候flush缓冲区,直到把全部数据拷贝到缓冲区):

_IO_size_t _IO_default_xsputn (_IO_FILE *f, const void *data, _IO_size_t n)
{const char *s = (char *) data;_IO_size_t more = n;if (more <= 0)return 0;for (;;){/* Space available. */if (f->_IO_write_ptr < f->_IO_write_end)          {_IO_size_t count = f->_IO_write_end - f->_IO_write_ptr;if (count > more)count = more;//数量不同的时候使用不同的拷贝方式if (count > 20){
#ifdef _LIBCf->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count);
#elsememcpy (f->_IO_write_ptr, s, count);f->_IO_write_ptr += count;
#endifs += count;}else if (count){char *p = f->_IO_write_ptr;_IO_ssize_t i;for (i = count; --i >= 0; )*p++ = *s++;f->_IO_write_ptr = p;}more -= count;}//if (more == 0 || _IO_OVERFLOW (f, (unsigned char) *s++) == EOF)break;more--;}return n - more;
}

emmmmmm貌似只是把代码抄了一次…突然发现C语言的文件操作有很多不明白的地方…还是去看一下的C语言的文件操作,之后应该就能看懂代码为什么要这样写了…

这篇关于glibc-2.23 puts源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779846

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺