TensorFlow代码实现(二)[实现异或门(XOR)]

2024-03-06 04:48

本文主要是介绍TensorFlow代码实现(二)[实现异或门(XOR)],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一个实验:用神经网络实现异或门
测试数据如下:
[0,0]->[0]
[1,0]->[1]
[1,1]->[0]
[0,1]->[1]
数据量很小,但异或门远没有我想象的好写,原来在第一层的时候我使用的激活函数是relu,第一层有两个神经元;输出层使用的激活函数是softmax;学习率是0.01;loss function选的是梯度下降算法,weights和biases都是随机产生的非零数据。
后来发现这样训练出来的神经网络的预测值是[0.5,0.5,0.5,0.5]。
最后参考了别人的程序,改成了如下配置**第一层有16个神经元(其实影响不大),第一层使用的激活函数是relu;输出层使用的激活函数是sigmoid;loss function选的是adam,这样修改之后就开始像准确值逼近了!
看来深度学习会设计才是最重要的。
下面附上代码:

import tensorflow as tf
learning_rate = 0.01
x_data = [[0.,0.],[1.,0.],[1.,1.],[0.,1.]]
x = tf.placeholder("float", shape = [None,2])
y_data = [0,1,0,1]
y = tf.placeholder("float",shape=[None,1])
weights = {'w1':tf.Variable(tf.random_normal([2,16])),'w2':tf.Variable(tf.random_normal([16,1]))
}
biases = {'b1':tf.Variable(tf.random_normal([1])),'b2':tf.Variable(tf.random_normal([1]))
} 
def dnn(_X,_weights,_biases):d1 = tf.matmul(_X, _weights['w1'])+_biases['b1']d1 = tf.nn.relu(d1)d2 = tf.matmul(d1,_weights['w2'])+_biases['b2']d2 = tf.nn.sigmoid(d2)return d2
pred = dnn(x, weights, biases)cost = tf.reduce_mean(tf.square(y-pred))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
init = tf.initialize_all_variables()
with tf.Session() as sess:sess.run(init)step = 1for _ in range(1500):batch_xs = tf.reshape(x_data,shape=[-1,2])batch_ys = tf.reshape(y_data,shape=[-1,1])#print(batch_xs)#print(batch_ys)sess.run(optimizer,feed_dict={x:sess.run(batch_xs),y:sess.run(batch_ys)})acc = sess.run(accuracy,feed_dict={x:sess.run(batch_xs),y:sess.run(batch_ys)})loss = sess.run(cost,feed_dict = {x:sess.run(batch_xs),y:sess.run(batch_ys)})#print("Step "+str(step)+",Minibatch Loss = "+"{:.6f}".format(loss)+", Training Accuracy = "+"{:.5f}".format(acc))step += 1if(step%100==0):print("Step "+str(step)+"    loss "+"{:.6f}".format(loss))print(sess.run(pred,feed_dict={x:sess.run(batch_xs)}))#    print(sess.run(weights))#    print(sess.run(biases))print("Optimization Finished!")

这篇关于TensorFlow代码实现(二)[实现异或门(XOR)]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778886

相关文章

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码