本文主要是介绍TensorFlow代码实现(二)[实现异或门(XOR)],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
第一个实验:用神经网络实现异或门
测试数据如下:
[0,0]->[0]
[1,0]->[1]
[1,1]->[0]
[0,1]->[1]
数据量很小,但异或门远没有我想象的好写,原来在第一层的时候我使用的激活函数是relu,第一层有两个神经元;输出层使用的激活函数是softmax;学习率是0.01;loss function选的是梯度下降算法,weights和biases都是随机产生的非零数据。
后来发现这样训练出来的神经网络的预测值是[0.5,0.5,0.5,0.5]。
最后参考了别人的程序,改成了如下配置**第一层有16个神经元(其实影响不大),第一层使用的激活函数是relu;输出层使用的激活函数是sigmoid;loss function选的是adam,这样修改之后就开始像准确值逼近了!
看来深度学习会设计才是最重要的。
下面附上代码:
import tensorflow as tf
learning_rate = 0.01
x_data = [[0.,0.],[1.,0.],[1.,1.],[0.,1.]]
x = tf.placeholder("float", shape = [None,2])
y_data = [0,1,0,1]
y = tf.placeholder("float",shape=[None,1])
weights = {'w1':tf.Variable(tf.random_normal([2,16])),'w2':tf.Variable(tf.random_normal([16,1]))
}
biases = {'b1':tf.Variable(tf.random_normal([1])),'b2':tf.Variable(tf.random_normal([1]))
}
def dnn(_X,_weights,_biases):d1 = tf.matmul(_X, _weights['w1'])+_biases['b1']d1 = tf.nn.relu(d1)d2 = tf.matmul(d1,_weights['w2'])+_biases['b2']d2 = tf.nn.sigmoid(d2)return d2
pred = dnn(x, weights, biases)cost = tf.reduce_mean(tf.square(y-pred))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
init = tf.initialize_all_variables()
with tf.Session() as sess:sess.run(init)step = 1for _ in range(1500):batch_xs = tf.reshape(x_data,shape=[-1,2])batch_ys = tf.reshape(y_data,shape=[-1,1])#print(batch_xs)#print(batch_ys)sess.run(optimizer,feed_dict={x:sess.run(batch_xs),y:sess.run(batch_ys)})acc = sess.run(accuracy,feed_dict={x:sess.run(batch_xs),y:sess.run(batch_ys)})loss = sess.run(cost,feed_dict = {x:sess.run(batch_xs),y:sess.run(batch_ys)})#print("Step "+str(step)+",Minibatch Loss = "+"{:.6f}".format(loss)+", Training Accuracy = "+"{:.5f}".format(acc))step += 1if(step%100==0):print("Step "+str(step)+" loss "+"{:.6f}".format(loss))print(sess.run(pred,feed_dict={x:sess.run(batch_xs)}))# print(sess.run(weights))# print(sess.run(biases))print("Optimization Finished!")
这篇关于TensorFlow代码实现(二)[实现异或门(XOR)]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!