[AIGC] 深入理解Flink中的窗口、水位线和定时器

2024-03-06 04:12

本文主要是介绍[AIGC] 深入理解Flink中的窗口、水位线和定时器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Flink是一种流处理和批处理的混合引擎,它提供了一套丰富的APIs,以满足不同的数据处理需求。在本文中,我们主要讨论Flink中的三个核心机制:窗口(Windows)、水位线(Watermarks)和定时器(Timers)。

1. 窗口

在流处理应用中,一种常见的需求是计算某个时间范围内的数据,这种时间范围就是所谓的窗口。根据实际需求,Flink提供了各种类型的窗口,例如滚动窗口与滑动窗口。滚动窗口将数据流分成长度相等的非重叠区间,而滑动窗口则分成可能重叠的区间。

例如,您可以在每5分钟的滚动窗口上进行计算,以对数据进行归档或元数据统计。

input.timeWindow(Time.minutes(5)).apply(new MyWindowFunction());

2. 水位线

水位线是Flink时间机制中至关重要的一部分,用于跟踪事件时间的进度。水位线本质上是一个带有时间戳的流,在同一个数据流中流动,并表示处理到某个时间点为止的数据。

例如,一个时间戳为t的水位线表示所有时间戳小于或等于t的数据都已经到达。这为乱序事件提供了处理可能性,让Flink在事件的延迟统计中有了一定的伸缩性。

3. 定时器

定时器提供了在指定的未来时间点触发计算的能力。配合事件时间语义,定时器成为了处理事件事件迟到情况的有力工具。在窗口接收到延迟数据时,通过定时器,可以自由地进行一些补救操作,如触发额外的窗口计算。

例如,下面的代码设置了一个在事件时间超过窗口末端1小时后还能触发窗口计算的定时器:

public class LateDataWindowFunction extends WindowFunction<...> {public void apply(...) {// set timer for one hour laterctx.registerEventTimeTimer(window.getEnd + 3600000);}@Overridepublic void onTimer(long timestamp, OnTimerContext ctx, ... out) throws Exception {// triggered when the watermark passes the timer's timestamp}
}

Flink的窗口、水位线和定时器是流处理中不可或缺的工具,它们共同作用,帮助Flink处理难题,确保在面对各种复杂情况时,都能提供准确可靠的处理结果。

参考资料
  • Timely Stream Processing | Apache Flink
  • Windowing and Watermarks in Flink
  • Debugging Windows & Event Time | Apache Flink

这篇关于[AIGC] 深入理解Flink中的窗口、水位线和定时器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778813

相关文章

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是