UVa 439/HDU 1372/POJ 2243/ZOJ 1091 Knight Moves(BFS纯数学方法)

2024-03-05 21:08

本文主要是介绍UVa 439/HDU 1372/POJ 2243/ZOJ 1091 Knight Moves(BFS纯数学方法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

439 - Knight Moves

Time limit: 3.000 seconds

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105&page=show_problem&problem=380

http://acm.hdu.edu.cn/showproblem.php?pid=1372

http://poj.org/problem?id=2243

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1091

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.

Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.

Input Specification

The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard.

Output Specification

For each test case, print one line saying "To get from xx to yy takes n knight moves.".

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

题意:

在辽阔的N*N大草原上(棋盘)上你有一只草泥马,马走日。求从a到b怎么走步数最小。


思路:

1. BFS,复杂度O(N^2),N指棋盘边长。

2. 数学方法,复杂度O(N^2),但系数比第一种小很多:

设横纵坐标的差值分别是x,y。由于我们的草泥马只能有8种走法,实际上只会出现4种(方向向量有(1,2),(2,1),(1,-2),(2,-1),(-1,2),(-2,1),(-1,-2),(-2,-1)8种,但是如果要走最小的次数,就不可能同时出现(1,2)和(-1,-2)这样相反的方向向量,所以只会出现4种)。所以,我们设方向向量为(1,2),(2,1),(2,-1),(1,-2)的有a,b,c,d次,其中a,b,c,d可以为负数(比如a为负数代表方向向量为(-1,-2))。

于是,可以列两个方程:


我们要求的是|a|+|b|+|c|+|d|的最小值。把a,b,看做常量,解得:


所以a+2b≡2x+y(mod 3),即a≡-2b+2x+y(mod 3)(-3≤a,b3)

但由于a,b关系的制约,当b在-3到3范围内变动时,a只有三种情况(取-3,0,3或-2,1或-1,2)

所以a,b的组合有16或17种,比较每种情况的|a|+|b|+|c|+|d|,求最小的即可。

但是在计算角落时要另外考虑,比如(a1,b2)按上面方法算的是2,实际是4。

经过计算知,对于8*8的只有4种情况:(a1,b2),(a8,b7),(g2,h1),(g7,h8),

对这四种情况单独拿出来说就好了。


完整代码:

BFS,很慢。

/*UVaOJ: 0.022s*/
/*HDU: 31ms,244KB*/
/*POJ: 266ms,156KB*/
/*ZOJ: 10ms,180KB*/#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;bool vis[9][9];
int a, b, c, d;
int mov[8][2] = {1, 2, -1, 2, -2, 1, -2, -1, -1, -2, 1, -2, 2, -1, 2, 1};struct node
{int x, y, step;
} lnode;int bfs()
{int i;queue<node>q;node cur, next;cur.x = a;cur.y = b;cur.step = 0;vis[cur.x][cur.y] = true;q.push(cur);while (!q.empty()){cur = q.front();q.pop();for (i = 0; i < 8; i++){next.x = cur.x + mov[i][0];next.y = cur.y + mov[i][1];if (next.x >= 1 && next.x <= 8 && next.y >= 1 && next.y <= 8){if (next.x == c && next.y == d){next.step = cur.step + 1;return next.step;}if (!vis[next.x][next.y]){next.step = cur.step + 1;vis[next.x][next.y] = true;q.push(next);}}}}return -1;
}int main()
{char str[5], str2[5];while (~scanf("%s %s", str, str2)){memset(vis, 0, sizeof(vis));a = str[0] - '`' ;//'a'前面是'`'b = str[1] - '0';c = str2[0] - '`' ;d = str2[1] - '0';int ans = 0;if (a != c || b != d)ans = bfs();printf("To get from %s to %s takes %d knight moves.\n", str, str2, ans);}return 0;
}


数学方法,较快。

/*UVaOJ: 0.019s*/
/*HDU: 15ms,232KB*/
/*POJ: 16ms,144KB*/
/*ZOJ: 0ms,180KB*/#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;int main()
{char except[8][3] = {"a1", "b2", "a8", "b7", "g2", "h1", "g7", "h8"};char s1[5], s2[5];int  x, y, a, b, c, d,sum, m, temp;while (~scanf("%s%s", s1, s2)){if (!strcmp(s1, s2)){printf("To get from %s to %s takes 0 knight moves.\n", s1, s2);continue;}bool flag = false;for (int i = 0; i < 8; i += 2)if (!((strcmp(s1, except[i]) || strcmp(s2, except[i + 1]))&& (strcmp(s1, except[i + 1]) || strcmp(s2, except[i])))){flag = true;break;}if (flag){printf("To get from %s to %s takes 4 knight moves.\n", s1, s2);continue;}x = s2[0] - s1[0];y = s2[1] - s1[1];sum = 1 << 6;//下面a,b的取值范围是由-3<=a,b<=3所确定的//注意b取负数和正数的情况是不一样的//注意取模时,-1%3!=2而是=-1for (b = -3; b <= 3; b++){m = (y + 2 * x - 2 * b) % 3;for (a = m - 3; a <= m + 3; a += 3){c = (2 * x + y - 4 * a - 5 * b) / 3;d = (5 * a + 4 * b - x - 2 * y) / 3;temp = abs(a) + abs(b) + abs(c) + abs(d);if (temp < sum)sum = temp;}}printf("To get from %s to %s takes %d knight moves.\n", s1, s2, sum);}return 0;
}


题外话:可以打表。

这篇关于UVa 439/HDU 1372/POJ 2243/ZOJ 1091 Knight Moves(BFS纯数学方法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777809

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S