深度学习-Pytorch实现经典VGGNet网络

2024-03-05 11:04

本文主要是介绍深度学习-Pytorch实现经典VGGNet网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习-Pytorch实现经典VGGNet网络

深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。

用pytorch构建CNN经典网络模型VGGNet,还可以用数据进行训练模型,得到一个优化的模型。

深度学习算法

深度学习-回顾经典AlexNet网络:山高我为峰-CSDN博客

深度学习-CNN网络改进版LetNet5-CSDN博客

深度学习-回顾CNN经典网络LetNet-CSDN博客

GPT实战系列-如何用自己数据微调ChatGLM2模型训练_pytorch 训练chatglm2 模型-CSDN博客

VGGNet概述

2014年,牛津大学计算机视觉组(Visual Geometry Group)和DeepMind公司一起研发了新的卷积神经网络,并命名为VGGNet。VGGNet是比AlexNet更深的深度卷积神经网络,该模型获得了2014年ILSVRC竞赛的第二名。

网络结构

VGG 的结构与 AlexNet 类似,区别是深度更深,但形式上更加简单。VGG由5层卷积层、3层全连接层、1层softmax输出层构成,层与层之间使用maxpool(最大化池)分开,所有隐藏层的激活单元都采用ReLU函数。
VGG结构图

事实上,作者设计了6种网络结构,以下以常用的VGG16 D为例。

输入图像3通道分辨率:224x224x3

结构:

9层:图像输入后,5个卷积层,3个全连接层,1个输出层;

(1)C1:3x3 —>64个conv 3x3 --> ReLU–>64个conv 3x3–> ReLU --> 输出64个224×224特征图–> MaxPool 2x2 --> 输出 64个112x112;

(2)C2:3x3 —>128个conv 3x3 --> ReLU–>128个conv 3x3–> ReLU --> 输出128个112×112特征图–> MaxPool 2x2 --> 输出 128个56x56;

(3)C3:3x3 —>256个conv 3x3 --> ReLU–>256个conv 3x3–> ReLU --> 256个conv 3x3–> ReLU -->输出256个56×56特征图–> MaxPool 2x2 --> 输出 256个28x28;

(4)C4:3x3 —>512个conv 3x3 --> ReLU–>512个conv 3x3–> ReLU --> 512个conv 3x3–> ReLU -->输出512个28×28特征图–> MaxPool 2x2 --> 输出 512个14x14;

(5)C5:3x3 —>512个conv 3x3 --> ReLU–>512个conv 3x3–> ReLU --> 512个conv 3x3–> ReLU -->输出512个14×14特征图–> MaxPool 2x2 --> 输出 512个7x7;

(6)FC6 ---->7x7x512 展平77512一维向量–>输出4096个1x1–> ReLU --> Dropout;

(7)FC7 ----> 输入1x1x4096,输出1x1x4096–> ReLU --> Dropout

(8)FC8 ----> 输入1x1x4096,输出1x1x1000

(9)输出层—> 输入1x1x1000–>softmax -->输出 1000分类

整个VGGNet 16 D网络包含的参数数量为 138M个参数。

在这里插入图片描述

优势与不足

优势:采用小卷积核conv 3x3,增加卷积子层,网络深度从11层到19层,Maxpool 核缩小为2x2,特征通道更宽,全连接卷积,图像尺寸扩大224x224x3。

Pytorch实现

以下便是使用Pytorch实现的经典网络结构VGGNet16

class VGGNet16(nn.Module):def __init__(self, num_classes, grayscale=False): """num_classes: 分类的数量grayscale:是否为灰度图"""super(VGGNet, self).__init__()self.grayscale = grayscaleself.num_classes = num_classesif self.grayscale: # 可以适用单通道和三通道的图像in_channels = 1else:in_channels = 3# 卷积神经网络C1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.features = nn.Sequential(C1,C2,C3,C4,C5)# 分类器self.classifier = nn.Sequential(nn.Linear(7*7*512, 4096),nn.ReLU(),nn.Dropout(),nn.Linear(4096*1*1, 4096),nn.ReLU()nn.Dropout()nn.Linear(4096, 1000))def forward(self, x):x = self.features(x) # 输出 特征图x = torch.flatten(x, 1) # 展平 logits = self.classifier(x) # 输出 probas = F.softmax(logits, dim=1)return logits, probas

大家可以和前面的对照差异,也可以一窥DeepLearning技术的突破点。

在VGGNet 是一大创举,DeepMind团队更闻名的是在围棋开创一片天地,AlphaGo风靡一时,把人工智能推向又一个高潮,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

深度学习

Caffe笔记:python图像识别与分类_python 怎么识别 caffe-CSDN博客

深度学习-Pytorch同时使用Numpy和Tensors各自特效-CSDN博客

深度学习-Pytorch运算的基本数据类型_pytorch支持的训练数据类型-CSDN博客

深度学习-Pytorch如何保存和加载模型

深度学习-Pytorch如何构建和训练模型-CSDN博客

深度学习-Pytorch数据集构造和分批加载-CSDN博客

Python Faster R-CNN 安装配置记录_attributeerror: has no attribute 'smooth_l1_loss-CSDN博客

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

这篇关于深度学习-Pytorch实现经典VGGNet网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776305

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow