C++惯用法之RAII思想: 资源管理

2024-03-05 10:44

本文主要是介绍C++惯用法之RAII思想: 资源管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++编程技巧专栏:http://t.csdnimg.cn/eolY7

目录

1.概述

 2.RAII的应用

2.1.智能指针

2.2.文件句柄管理

2.3.互斥锁

3.注意事项

3.1.禁止复制

3.2.对底层资源使用引用计数法

3.3.复制底部资源(深拷贝)或者转移资源管理权(移动语义)

4.RAII的优势和挑战

5.总结


1.概述

        RAII是Resource Acquisition Is Initialization的缩写,即“资源获取即初始化”。RAII原则的基本思想是将资源的生命周期与对象的生命周期绑定在一起。它是C++语言的一种管理资源、避免资源泄漏的惯用法,利用栈的特点来实现,这一概念最早由Bjarne Stroustrup提出。在函数中由栈管理的临时对象,在函数结束时会自动析构,从而自动释放资源,因此,我们可以通过构造函数获取资源,通过析构函数释放资源。这种自动管理资源的方式可以大大减少资源泄漏、野指针和其他与资源管理相关的问题。常见的写法为:

Object() {// acquire resource in constructor
}
~Object() {// release resource in destructor
}

 2.RAII的应用

2.1.智能指针

智能指针是RAII原则在内存管理中的一个典型应用。C++11引入了多种智能指针类型,如std::unique_ptr、std::shared_ptr和std::weak_ptr,它们可以自动管理动态分配的内存。

例如,使用std::unique_ptr可以确保在不需要动态分配的内存时自动释放它:

#include <iostream>
#include <memory>class MyClass {
public:MyClass() { std::cout << "MyClass created\n"; }~MyClass() { std::cout << "MyClass destroyed\n"; }
};int main() {{std::unique_ptr<MyClass> ptr(new MyClass()); // MyClass对象被创建// 当ptr离开这个作用域时,它会自动释放所指向的MyClass对象} // MyClass对象在这里被销毁,输出"MyClass destroyed"return 0;
}

在这个例子中,当ptr离开其作用域时,std::unique_ptr的析构函数会被调用,从而释放它所指向的MyClass对象。这种自动的内存管理方式避免了手动调用delete可能导致的错误。

2.2.文件句柄管理

另一个常见的应用是使用RAII原则管理文件句柄。通过创建一个封装了文件句柄的类,可以确保在不需要文件时自动关闭它。

例如:

#include <fstream>
#include <iostream>class FileWrapper {
public:FileWrapper(const std::string& filename, std::ios_base::openmode mode): file_(filename, mode) {if (!file_.is_open()) {throw std::runtime_error("无法打开文件: " + filename);}}~FileWrapper() {file_.close(); // 在析构函数中关闭文件句柄}// 提供对内部文件的访问(如果需要的话)std::fstream& file() { return file_; }private:std::fstream file_; // 封装文件句柄的成员变量
};

在这个例子中,FileWrapper类的构造函数打开一个文件,并在析构函数中关闭它。这确保了即使在异常情况下,文件句柄也会被正确关闭。

2.3.互斥锁

在多线程编程中,std::lock_guard, std::unique_lock, std::shared_lock等也利用了RAII的原理,用于管理互斥锁。当这些类的等对象创建时,会自动获取互斥锁;当对象销毁时,会自动释放互斥锁。

std::lock_guard的构造函数如下:

template< class Mutex > class lock_guard;

std::lock_guard的析构函数会自动释放互斥锁,因此,我们可以通过std::lock_guard来管理互斥锁,从而避免忘记释放互斥锁。如:

std::mutex mtx;
std::lock_guard<std::mutex> lock(mtx); // unlock when lock is out of scope

不使用RAII的情况下,我们需要手动释放互斥锁,如下所示:

std::mutex mtx;
mtx.lock();
// ...
mtx.unlock();

3.注意事项

在资源管理类中小心copy行为

  • 拷贝RAII对象必须考虑其管理的资源,针对其资源做出拷贝行为的实现
  • 常见的RAII对象拷贝行为:拒绝拷贝、引用计数法、深拷贝、资源所有权转移

并非所有资源都是基于堆的(heap-based),对于这种对象不能直接使用智能指针,需要自定义其资源管理类。例如:为了说明锁的资源管理行为,我们这里给定义一个锁,来替代C++里的锁

struct MyMutex {MyMutex() {printf("Construct MyMutex\n");}~MyMutex() {printf("Deconstruct MyMutex\n");}
};

其上锁解锁行为:

void lock(MyMutex *) {printf("lock\n");
}void unlock(MyMutex *) {printf("unlock\n");
}

锁的资源管理类,在构造函数获取资源(加锁),在析构函数释放资源(解锁):

struct Lock {
private:MyMutex *myMutex;
public:explicit Lock(MyMutex *mutex) : myMutex(mutex) {lock(myMutex);}~Lock() {unlock(myMutex);}
};

使用:

int main() {MyMutex myMutex;{printf("---------\n");Lock lk(&myMutex);printf("---------\n");// 离开代码块将自动析构局部对象,因此会释放锁}
}
/*
Construct MyMutex
---------
lock
---------
unlock
Deconstruct MyMutex
*/

潜在风险,如果发生了拷贝行为:

Lock l1(&mutex);
Lock l2(l1);

那么将立即死锁(Linux里一般是非递归锁,重复加锁会造成死锁)

3.1.禁止复制

继承nocopyable,或者将拷贝相关函数设置为delete。如:

//[1]
class NonCopyable
{
protected:NonCopyable(const NonCopyable&){}NonCopyable& operator=(NonCopyable&){}
};或//[2]
class NonCopyable
{
public:NonCopyable(const NonCopyable&)=delete;NonCopyable& operator=(const NonCopyable&)=delete;
};

3.2.对底层资源使用引用计数法

思想:维护一个计数器,当最后一个使用者被销毁时,才真正释放资源,如:

struct Lock {
private:shared_ptr<MyMutex> mutexPtr;
public:// 将unlock函数设置为删除器explicit Lock(MyMutex *mutex) : mutexPtr(mutex, unlock) {lock(mutexPtr.get());}// 不必声明析构函数,因为mutexPtr是栈上对象,所以会被默认释放,那么智能指针就会调用其释放器unlock
};

3.3.复制底部资源(深拷贝)或者转移资源管理权(移动语义)

在资源管理类中提供对原始资源的访问

  • API常需要要求访问原始资源,所以RAII资源管理类应该提供访问原始资源的接口
  • 对原始资源可以由显示转换或者隐式转换获得.其在安全性和方便性上各有取舍

智能指针提供了get接口来访问原始资源

在其中要注意,不可以get一个智能指针去初始化另一个智能指针,否则会发生重复释放

int main() {shared_ptr<MyMutex> p1 = make_shared<MyMutex>();{shared_ptr<MyMutex> p2(p1.get());cout << p1.use_count() << " " << p2.use_count() << endl;
//        1 1
//        p2离开代码块,释放其管理的资源,p1指针指向被释放的内存}
}

程序将异常退出

4.RAII的优势和挑战

优势:

  1. 自动资源管理:通过绑定资源的生命周期与对象的生命周期,RAII自动处理资源的获取和释放,减少了手动管理的错误。

  2. 代码简洁性:RAII原则鼓励将资源管理逻辑封装在类中,使代码更加清晰和易于维护。

  3. 异常安全性:当使用RAII时,即使在异常情况下,资源也会被正确释放,这有助于提高程序的健壮性。

挑战:

  1. 资源所有权的转移:在使用RAII时,需要仔细考虑资源所有权的转移。例如,在使用智能指针时,需要明确何时使用std::move来转移所有权。

  2. 与旧代码的兼容性:在将RAII原则应用于现有代码库时,可能需要大量的重构工作来适应新的资源管理方式。

  3. 学习曲线:对于初学者来说,理解和正确应用RAII原则可能需要一些时间和经验。

5.总结

        RAII原则为C++程序员提供了一种强大且优雅的资源管理方法。通过将资源的生命周期与对象的生命周期绑定在一起,RAII不仅简化了资源管理,还提高了代码的健壮性和可维护性。然而,为了充分利用RAII的优势,程序员需要仔细设计类的接口和实现,并考虑到资源所有权和资源转移的问题。

这篇关于C++惯用法之RAII思想: 资源管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776260

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名