nlp深度学习代码总结--pytoch

2024-03-05 01:18

本文主要是介绍nlp深度学习代码总结--pytoch,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码总结

文本清洗

去除网址

def remove_URL(text):url = re.compile(r'https?://\S+|www\.\S+')return url.sub(r'', text)

去除表情符号

def remove_emoji(text):emoji_pattern = re.compile('['u'\U0001F600-\U0001F64F'  # emoticonsu'\U0001F300-\U0001F5FF'  # symbols & pictographsu'\U0001F680-\U0001F6FF'  # transport & map symbolsu'\U0001F1E0-\U0001F1FF'  # flags (iOS)u'\U00002702-\U000027B0'u'\U000024C2-\U0001F251'']+',flags=re.UNICODE)return emoji_pattern.sub(r'', text)

去掉网页标签

def remove_html(text):html = re.compile(r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});')return re.sub(html, '', text)

去掉标点符号

def remove_punct(text):#所有的标点字符table = str.maketrans('', '', string.punctuation)return text.translate(table)def remove_punct(s):s = re.sub(r"([.!?])", r" \1", s)s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)s = re.sub(r"\s+", r" ", s).strip()return s

字符编码转换

def unicodeToAscii(s):return ''.join(c for c in unicodedata.normalize('NFD', s)if unicodedata.category(c) != 'Mn')

去除低频单词

去除停用词

from nltk.corpus import stopwordsdef remove_stopword(x):return [y for y in x if y not in stopwords.words('english')]
train['temp_list'] = train['temp_list'].apply(lambda x:remove_stopword(x))

文本处理

def clean_text(text):'''Make text lowercase, remove text in square brackets,remove links,remove punctuationand remove words containing numbers.'''text = str(text).lower()text = re.sub('\[.*?\]', '', text)text = re.sub('https?://\S+|www\.\S+', '', text)text = re.sub('<.*?>+', '', text)text = re.sub('[%s]' % re.escape(string.punctuation), '', text)text = re.sub('\n', '', text)text = re.sub('\w*\d\w*', '', text)return texttrain['text'] = train['text'].apply(lambda x:clean_text(x))
nltk
#语料库和词典
from nltk.corpus import stopwords, wordnet
#分词
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
#频率分布和平滑概率
from nltk.probability import FreqDist

数据分析及可视化

分析数据
#可以看到训练数据的数目以及不同值的数目
train.describe()#统计某变量不同值的种类
temp = train.groupby('sentiment').count()['text'].reset_index().sort_values(by='text',ascending=False)
#也可直接使用sns可视化
sns.countplot(x='sentiment',data=train)#迭代pandas读取的数据
for ind,row in train.iterrows()#创建dataframe观察数据
temp = pd.DataFrame(top.most_common(20))
temp.columns = ['Common_words','count']
temp.style.background_gradient(cmap='Blues')
数据集词频统计
from collections import Counterc = Counter()
#默认按出现顺序输入字典元素
most = counter.most_common()fig = px.bar(temp, x="count", y="Common_words", title='Commmon Words in Selected Text', orientation='h', width=700, height=700,color='Common_words')
两变量之间的关系
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")sns.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=iris, size=5)sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
两对变量之间的关系
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3)

处理输入数据

去除空白值
train.dropna(inplace=True)
划分数据集
from torch.utils.data import TensorDataset, random_splittrain_dataset, val_dataset = random_split(dataset, [train_size, val_size])
分词转换

bert

tokenizer = BertTokenizer.from_pretrained('bert-large-uncased', do_lower_case=True)#适配分词器
tokenizer.tokenize(combined[0])
#转换为id,不包含csl,sep等
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(combined[0]))
#编码
tokenizer.encode(combined[0],max_length = 512)encoded_dict = tokenizer.encode_plus(
text,                      # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation='longest_first', # Activate and control truncation
max_length = 84,           # Max length according to our text data.
pad_to_max_length = True, # Pad & truncate all sentences.
return_attention_mask = True,   # Construct attn. masks.
return_tensors = 'pt',     # Return pytorch tensors.
)
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])

手动创建tokenizer

#填充
def pad_and_truncate(sequence, maxlen, dtype='int64', padding='post', truncating='post', value=0):x = (np.ones(maxlen) * value).astype(dtype)if truncating == 'pre':trunc = sequence[-maxlen:]else:trunc = sequence[:maxlen]trunc = np.asarray(trunc, dtype=dtype)if padding == 'post':x[:len(trunc)] = truncelse:x[-len(trunc):] = truncreturn xclass Tokenizer(object):def __init__(self, max_seq_len, lower=True):self.lower = lowerself.max_seq_len = max_seq_lenself.word2idx = {}self.idx2word = {}self.idx = 1def fit_on_text(self, text):if self.lower:text = text.lower()words = text.split()for word in words:if word not in self.word2idx:self.word2idx[word] = self.idxself.idx2word[self.idx] = wordself.idx += 1def text_to_sequence(self, text, reverse=False, padding='post', truncating='post'):if self.lower:text = text.lower()words = text.split()unknownidx = len(self.word2idx)+1sequence = [self.word2idx[w] if w in self.word2idx else unknownidx for w in words]if len(sequence) == 0:sequence = [0]if reverse:sequence = sequence[::-1]return pad_and_truncate(sequence, self.max_seq_len, padding=padding, truncating=truncating)
#使用分词器在对应文本上  
tokenizer.fit_on_text(text)
#保存分词器
pickle.dump(tokenizer, open(dat_fname, 'wb'))
#使用分词器
tokenizer = pickle.load(open(dat_fname, 'rb'))
转换为向量矩阵
embedding_matrix = np.zeros((len(word2idx) + 2, embed_dim))#使用glove
fname = './glove.twitter.27B/glove.twitter.27B.' + str(embed_dim) + 'd.txt' \ if embed_dim != 300 else './glove.42B.300d.txt' word_vec = _load_word_vec(fname, word2idx=word2idx, embed_dim=embed_dim)for word, i in word2idx.items():vec = word_vec.get(word)if vec is not None:
# words not found in embedding index will be all-zeros.embedding_matrix[i] = vecpickle.dump(embedding_matrix, open(dat_fname, 'wb'))
打包数据
for x in train:temp_ids = tokenizer.encode(x, add_special_tokens=True)max_len = max(max_len, len(temp_ids))input_ids.append(temp_ids)
#转换得到imput_ids和attention_masks
input_ids = np.array([i + [0]*(max_len-len(i)) for i in input_ids])
attention_masks = np.where(input_ids != 0, 1, 0)dataset = TensorDataset(input_ids, attention_masks, labels)
封装数据

自定义的Dataset需要继承它并且实现两个成员方法:
getitem() 该方法定义用索引(0 到 len(self))获取一条数据或一个样本
len()该方法返回数据集的总长度

from torch.utils.data import Dataset,DataLoader
class MRPCDataset(Dataset):def __init__(self, dataset):self.data = datasetdef __getitem__(self, index):#这里可以有很多操作return self.data[index][0], self.data[index][1], self.data[index][2]def __len__(self):return len(self.data)#实例化 并送入DataLoader
train_dataset = MRPCDataset(train_dataset)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)# 随机:shuffle=True

bert

# TensorDataset对tensor进行打包
train_ids = TensorDataset(a, b) 
for x_train, y_label in train_ids:print(x_train, y_label)# dataloader进行数据封装
train_loader = DataLoader(dataset=train_ids, batch_size=4, shuffle=True)
for i, data in enumerate(train_loader, 1):  
# 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)x_data, label = data

定义加载模型

bert
model = BertForSequenceClassification.from_pretrained(
'bert-large-uncased', # Use the 124-layer, 1024-hidden, 16-heads, 340M parameters BERT model with an uncased vocab.
num_labels = 2, # The number of output labels--2 for binary classification. You can increase this for multi-class tasks.   
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
自定义模型
import torch
#自定义前向传播,自动反向传播
class FCModel(torch.nn.Module):#注意继承自 torch.nn.Moduledef __init__(self):super(FCModel, self).__init__() # init父类#多种方式定义model的层self.fc = torch.nn.Linear(in_features=768, out_features=1)def forward(self, input):#使用model的层score = self.fc(input)result = torch.sigmoid(score)return result

GPU/CPU

#获取设备类型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#让model适应相应设备
model = FCModel()	#模型实例化
model = model.to(device)
#让数据适应相应设备
input_ids = input_ids.to(device)
显卡设置
#多GPU并行运行
model = nn.DataParallel(model)#清除显存
torch.cuda.empty_cache()

优化器

optimizer = AdamW(model.parameters(),lr = 6e-6, # args.learning_rateeps = 1e-8 # args.adam_epsilon)#学习率预热
scheduler = get_linear_schedule_with_warmup(
optimizer, 
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps
)
RMSProp

思想:梯度震动较大的项,在下降时,减小其下降速度;对于震动幅度小的项,在下降时,加速其下降速度

RMSprop采用均方根作为分母,可缓解Adagrad学习率下降较快的问题,对于RNN有很好的效果

torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)

优点:可缓解Adagrad学习率下降较快的问题,并且引入均方根,可以减少摆动,适合处理非平稳目标,对于RNN效果很好

缺点:依然依赖于全局学习率

Adam

将Momentum算法和RMSProp算法结合起来使用的一种算法,既用动量来累积梯度,又使得收敛速度更快同时使得波动的幅度更小,并进行了偏差修正

torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

优点:
1、对目标函数没有平稳要求,即loss function可以随着时间变化
2、参数的更新不受梯度的伸缩变换影响
3、更新步长和梯度大小无关,只和alpha、beta_1、beta_2有关系。并且由它们决定步长的理论上限
4、更新的步长能够被限制在大致的范围内(初始学习率)
5、能较好的处理噪音样本,能天然地实现步长退火过程(自动调整学习率)
6、很适合应用于大规模的数据及参数的场景、不稳定目标函数、梯度稀疏或梯度存在很大噪声的

训练和评估

for epoch_i in range(0, epochs):#model.train()#model.eval():告诉网络的所有层,你在eval模式,也就是说,像batchNorm和dropout这样的层会工作在eval模式而非training模式#model.eval()for step, batch in enumerate(train_dataloader):model.zero_grad()loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()

模型保存加载

一般模型
# 保存模型的全部 (大模型不建议)
torch.save(model, "./model_fc.pth")
model = torch.load("./model_fc.pth")
# 只保存各层的参数 (大模型建议)
torch.save(model.state_dict(), "./model_fc.pt")
model = FCModel()#加载前需要构造一个模型实例
model.load_state_dict(torch.load("./model_fc.pt"))
huggingface
#save tokenizer若未修改不用保存
bert_model.save_pretrained('./Fine_tune_BERT/')
#load
bert_model = TFBertModel.from_pretrained('./Fine_tune_BERT/')
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

可视化注意力

def showAttention(input_sentence, output_words, attentions):# 用colorbar设置图fig = plt.figure()ax = fig.add_subplot(111)cax = ax.matshow(attentions.numpy(), cmap='bone')fig.colorbar(cax)# 设置坐标ax.set_xticklabels([''] + input_sentence.split(' ') +['<EOS>'], rotation=90)ax.set_yticklabels([''] + output_words)# 在每个刻度处显示标签ax.xaxis.set_major_locator(ticker.MultipleLocator(1))ax.yaxis.set_major_locator(ticker.MultipleLocator(1))plt.show()def evaluateAndShowAttention(input_sentence):output_words, attentions = evaluate(encoder1, attn_decoder1, input_sentence)print('input =', input_sentence)print('output =', ' '.join(output_words))showAttention(input_sentence, output_words, attentions)

https://i.loli.net/2021/08/20/L1AfQu6evprKdbM.png

这篇关于nlp深度学习代码总结--pytoch的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774870

相关文章

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st