51单片机应用篇-- --数码管60秒计时,独立按键可调

2024-03-04 20:50

本文主要是介绍51单片机应用篇-- --数码管60秒计时,独立按键可调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开篇先说一句废话····
本旺名字叫萨摩耶,,Please 叫我旺财,,,哈哈,招财进宝嘛!

缘由

本来按照我的学习计划,我现在应该是单片机的学习过程,应该写单片机学习篇,但是因为在10月中旬收到一则私信,说让我帮忙写一个用独立按键控制数码管的小程序,我看到消息之后,构思了一下,我觉得这里应该会回到定时器中断来控制秒数,所以先去学习中断然后去写,不断的调试,弄好之后,最近学模数数模转换模块有点难,我觉得先缓一下,然后想起这事,特来写一篇文章总结一下。

项目需求

直接上图–
在这里插入图片描述

项目分析

其实上面的需求也算大概分析啦,细致的分析一下。

  • 首先得任务就是数码管循环显示00-59,如果没有每隔一秒的话,可以设置一个for循环来控制数码管显示时间,也可以用DeBug功能来调试出大概一秒,但是这些不怎么准确,所以要使用定时器中断来控制一秒。而00-59的值则设置一个全局变量num来存放。数码管显示的时候,直接设置十位和个位对num分别求模和求余,然后在数码管上动态显示即可。
  • 接着就是独立按键,这里我用的是类似于矩阵按键的检测方法,首先给一个高电平,然后根据按键后返回的值来判断哪个键按下,因为这里有四个按键,写在一起容易搞混,直接写四个函数,按下按键直接进入对应函数处理,因为K0可能会按到两次,对应K1和K2有不同的功能,那么可以设置一个标志位在K1和K2函数里判别K0按下几次,选择对应的功能。
  • 按下K0之后,进入K0函数处理,设置一个全局变量flag,首先默认为0,按下一下为1,再次按下之后,为2,而按下K0之后要调整秒数,那么数码管就得暂停,也就是定时器暂停(TR0=0;)
  • 按下K1和K2之后,首先先判断标志位flag的值,如果为0,也就是没有按过K0,那么直接跳出函数就好,如果为1,也就是K0按下一次,可以对个位处理,K1为加,即加1,K2为减,即减1,要注意的是,当num为00或者59是减1或者加1必须处理,因为00–59,不会出现超过59的数。如果为2,也就是K0按下两次,可以对十位处理,K1为加,即加10,K2为减,即减10,要注意的是,当num为00或者59是减10或者加10必须处理,因为00–59,不会出现超过59的数。
  • 按下K3之后,表示按键完成,数码管接着显示秒数,即定时器启动(TR0=1;)
    主函数里面不断的按键检测然后数码管显示即可。

项目代码

  • 数码管循环显示00–59
//数码管显示函数
void Showsmg(u8 shi,u8 ge){       //十位  个位//十位LSA=1;LSB=1;LSC=1;P0=smgduan[shi];Delay(1);P0=0x00;//个位LSA=0;LSB=1;LSC=1;P0=smgduan[ge];Delay(1);P0=0x00;
}
//延时函数
void Delay(u16 i)   //11.0592 1ms
{while(i--){unsigned char i, j;_nop_();i = 2;j = 199;do{while (--j);} while (--i);}
} 
//初始化定时器函数
void Init(){t0=0;num=0;shi=0;ge=0;flag=0;TMOD=0x01;TH0=(65536-9174)/256;   //10msTL0=(65536-9174)%256;EA=1;ET0=1;TR0=1;
}
void main(){Init();while(1){shi=num/10;ge=num%10;Showsmg(shi,ge);}
}
void Timer0() interrupt 1{TH0=(65536-9174)/256;   //重置TL0=(65536-9174)%256;t0++;if(t0==100){t0=0;num++;if(num==60)num=0;}
}
  • 独立按键的检测
//按键检测
void KeyDown(){GPIO_KEY=0x0f;     //独立按键端口if(GPIO_KEY!=0x0f){Delay(10);if(GPIO_KEY!=0x0f){GPIO_KEY=0x0f;switch(GPIO_KEY){case 0x0d : Key0();break;         //k0case 0x0e : Key1(flag);break;         //k1case 0x0b : Key2(flag);break;         //k2case 0x07 : Key3();break;         //k3}}while(GPIO_KEY!=0x0f);  //松手检测}
}
  • 独立按键处理函数
void Key0(){TR0=0;if(flag==0)   //第一次按K0flag=1;else          //第二次按K0flag=2;
}
void Key1(u8 flag){switch(flag){case 0: break;case 1: num+=1;if(num>=60) num=0;break;     //num超过59处理case 2: num+=10;if(num>60) num-=60;break;   //十位大于5处理}
}
void Key2(u8 flag){switch(flag){case 0: break;case 1: num-=1;if(num>59) num=59;break;case 2: {if(num>9) num-=10;else num+=50;}break;}
}
void Key3(){TR0=1;    //定时器启动flag=0;   //标志位清零
}

上面是每部分的代码,可以对应项目分析阅读,送上完整版。

smg.h

#include "reg52.h"
#include "intrins.h"typedef unsigned int u16;
typedef unsigned char u8;
#define GPIO_KEY P3
u8 smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};u8 t0,shi,ge,flag;
u16 num;				   
//38译码器					 
sbit LSA=P2^2;
sbit LSB=P2^3;
sbit LSC=P2^4;
//独立按键
sbit k0=P3^1;
sbit k1=P3^0;	
sbit k2=P3^2;	
sbit k3=P3^3;	
//数码管显示函数					 
void Showsmg(u8 decade,u8 unit);
//延时函数
void Delay(u16 i);
//初始化函数
void Init();
//按键检测
void KeyDown();				   
void Key0();
void Key1(u8 flag);
void Key2(u8 flag);
void Key3();

main.c

#include "smg.h"void main(){Init();while(1){KeyDown();shi=num/10;ge=num%10;Showsmg(shi,ge);}
}//数码管显示函数
void Showsmg(u8 shi,u8 ge){       //十位  个位//十位LSA=1;LSB=1;LSC=1;P0=smgduan[shi];Delay(1);P0=0x00;//个位LSA=0;LSB=1;LSC=1;P0=smgduan[ge];Delay(1);P0=0x00;
}
//延时函数
void Delay(u16 i)   //11.0592 1ms
{while(i--){unsigned char i, j;_nop_();i = 2;j = 199;do{while (--j);} while (--i);}
} 
//初始化函数
void Init(){t0=0;num=0;shi=0;ge=0;flag=0;TMOD=0x01;TH0=(65536-9174)/256;   //10msTL0=(65536-9174)%256;EA=1;ET0=1;TR0=1;
}
//按键检测
void KeyDown(){GPIO_KEY=0x0f;if(GPIO_KEY!=0x0f){Delay(10);if(GPIO_KEY!=0x0f){GPIO_KEY=0x0f;switch(GPIO_KEY){case 0x0d : Key0();break;         //k0case 0x0e : Key1(flag);break;         //k1case 0x0b : Key2(flag);break;         //k2case 0x07 : Key3();break;         //k3}}while(GPIO_KEY!=0x0f);  //松手检测}
}void Key0(){TR0=0;if(flag==0)   //第一次按K0flag=1;else          //第二次按K0flag=2;
}
void Key1(u8 flag){switch(flag){case 0: break;case 1: num+=1;if(num>=60) num=0;break;case 2: num+=10;if(num>60) num-=60;break;   //十位大于5处理}
}
void Key2(u8 flag){switch(flag){case 0: break;case 1: num-=1;if(num>59) num=59;break;case 2: {if(num>9) num-=10;else num+=50;}break;}
}
void Key3(){TR0=1;    //定时器启动flag=0;   //标志位清零
}
void Timer0() interrupt 1{TH0=(65536-9174)/256;   //重置TL0=(65536-9174)%256;t0++;if(t0==100){t0=0;num++;if(num==60)num=0;}
}

总结

首先先谢谢这位网友,这是间接的激励我呢。这是第一次在CSDN写博客让别人能找我帮忙,我刚到很开心哦,嘿嘿。也更加坚定我要好好学单片机的决心。

这篇关于51单片机应用篇-- --数码管60秒计时,独立按键可调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774399

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.