本文主要是介绍LeetCode1039. Minimum Score Triangulation of Polygon——区间dp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 一、题目
- 二、题解
一、题目
You have a convex n-sided polygon where each vertex has an integer value. You are given an integer array values where values[i] is the value of the ith vertex (i.e., clockwise order).
You will triangulate the polygon into n - 2 triangles. For each triangle, the value of that triangle is the product of the values of its vertices, and the total score of the triangulation is the sum of these values over all n - 2 triangles in the triangulation.
Return the smallest possible total score that you can achieve with some triangulation of the polygon.
Example 1:
Input: values = [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
Example 2:
Input: values = [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 375 + 457 = 245, or 345 + 347 = 144.
The minimum score is 144.
Example 3:
Input: values = [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 113 + 114 + 115 + 111 = 13.
Constraints:
n == values.length
3 <= n <= 50
1 <= values[i] <= 100
二、题解
class Solution {
public:int minScoreTriangulation(vector<int>& values) {int n = values.size();vector<vector<int>> dp(n,vector<int>(n,0));for(int l = n - 3;l >= 0;l--){for(int r = l + 2;r < n;r++){dp[l][r] = INT_MAX;for(int m = l + 1;m < r;m++){dp[l][r] = min(dp[l][r],dp[l][m] + dp[m][r] + values[l] * values[m] * values[r]);}}}return dp[0][n-1];}
};
这篇关于LeetCode1039. Minimum Score Triangulation of Polygon——区间dp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!