数据库管理-第158期 Oracle Vector DB AI-09(20240304)

2024-03-04 12:36

本文主要是介绍数据库管理-第158期 Oracle Vector DB AI-09(20240304),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据库管理158期 2024-03-04

  • 数据库管理-第158期 Oracle Vector DB & AI-09(20240304)
    • 1 创建示例表
    • 2 添加过滤条件的向量近似查询
      • 示例1
      • 示例2
      • 示例3
      • 示例4
      • 示例5
      • 示例6
      • 示例7
    • 总结

数据库管理-第158期 Oracle Vector DB & AI-09(20240304)

作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Associate: Database(Oracle与MySQL)
国内某科技公司 DBA总监
10年数据库行业经验,现主要从事数据库服务工作
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP、认证技术专家、年度墨力之星,ITPUB认证专家,OCM讲师
圈内拥有“总监”、“保安”、“国产数据库最大敌人”等称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。
除授权转载并标明出处外,均为“非法”抄袭。

一个周末过去了,感觉也没休息好,现在困得很,人整体也不大舒服。
上一期,已经展示了使用vector_distance()函数,由小到大排序输出向量距离对应结果。与专用向量数据库只存储向量且只能针对向量记性运算不同,Oracle Vector DB还可以同传统关系型数据库一样,在向量相关的SQL中添加where子句,在相似性搜索上增加过滤选项。相似性搜索与关系过滤、表连接叠加使用是一个非常强大的功能,不仅丰富了向量数据的使用方式,也简化了向量数据的使用。

1 创建示例表

按照下图创建示例表VT2,这张表是通过上一期的VT1表来创建,但是为每个向量增加了形状、颜色、大小等其他属性:
image.png

CREATE TABLE vt2 AS SELECT * FROM vt1;ALTER TABLE vt2 ADD (vsize varchar2(16),shape varchar2(16),color varchar2(16));DESC vt2;

image.png
修改向量对应大小:

UPDATE vt2
SET    vsize = 'Small'
WHERE  id IN (1, 4, 6, 8, 9, 21, 23, 26, 33, 44, 45, 52);UPDATE vt2
SET    vsize = 'Medium'
WHERE  id IN (5, 22, 25, 32, 34, 42, 43, 53, 54, 55);UPDATE vt2
SET    vsize = 'Large'
WHERE  id IN (2, 3, 7, 24, 31, 41, 51);COMMIT;

修改向量对应形状:

UPDATE vt2
SET    shape = 'Square'
WHERE  id IN (1, 3, 6, 42, 43, 54);UPDATE vt2
SET    shape = 'Triangle'
WHERE  id IN (2, 4, 7, 22, 31, 41, 44, 55);UPDATE vt2
SET    shape = 'Oval'
WHERE  id IN (5, 8, 9, 21, 23, 24, 25, 26, 32, 33, 34, 45, 51, 52, 53);COMMIT;

修改向量对应颜色:

UPDATE vt2
SET    color = 'Red'
WHERE  id IN (5, 8, 24, 26, 33, 34, 42, 44, 45, 53, 54, 55);UPDATE vt2
SET    color = 'Green'
WHERE  id IN (1, 4, 6, 21, 31, 52);UPDATE vt2
SET    color = 'Blue'
WHERE id IN (2, 3, 7, 9, 22, 23, 25, 32, 41, 43, 51);COMMIT;

检查表数据:

SELECT id, vsize, shape, color, v 
FROM   vt2
ORDER  BY id;

image.png
按大小、颜色、形状来查看向量:

SELECT vsize, count(vsize)
FROM   vt2
GROUP  BY vsize;SELECT color, COUNT(color)
FROM   vt2
GROUP  BY color;SELECT shape, COUNT(shape)
FROM   vt2
GROUP  BY shape;

image.png

2 添加过滤条件的向量近似查询

示例1

在上一期我们将查找与(16,3)最接近的三个向量。我们不关心实际距离,而是关心对象本身的ID。然而,在本次查询中,我们返回距离,以便将结果与下一个查询进行比较。
该查询的目的是从下图中检索以下Vectors。这里我们还限定了向量的ID范围(即指定向量簇):
image.png

SELECT id, vsize, shape, color, to_number(vector_distance(vector('[16, 3]'), v)) distance
FROM   vt2
WHERE  id > 30 AND id < 40
ORDER  BY vector_distance(vector('[16, 3]'), v)
FETCH FIRST 3 ROWS ONLY;

image.png

示例2

还是上面那个向量点(16,3),依然从对应向量簇中查找最近的3个向量,但是我们这次添加过滤条件为圆形,如下图:
image.png

SELECT id, vsize, shape, color, to_number(vector_distance(vector('[16, 3]'), v)) distance
FROM   vt2
WHERE  id > 30 AND id < 40
AND    shape = 'Oval'
ORDER  BY vector_distance(vector('[16, 3]'), v)
FETCH FIRST 3 ROWS ONLY;

image.png

示例3

这次查找与向量点(6,8)最近的10个向量,我们先不考虑距离,仅考虑ID,如下图:
image.png

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例4

还是向量点(6,8),只不过我们过滤红色,如下图:
image.png

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例5

还是向量点(6,8),在红色基础上添加椭圆形过滤条件,如下图:
image.png
注意,这里仅有8个红色的椭圆形,虽然SQL中要求输出前10,但是只有8个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例6

还是向量点(6,8),红色、椭圆形、小的过滤条件,如下图:
image.png
注意,这里仅有4个红色的小的椭圆形,虽然SQL中要求输出前10,但是只有4个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
AND    vsize  = 'Small'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例7

还是向量点(6,8),红色、椭圆形、小的过滤条件,现在再增加ID>10,如下图:
image.png
注意,这里ID大于10的仅有3个红色的小的椭圆形,虽然SQL中要求输出前10,但是只有3个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
AND    vsize  = 'Small'
AND    id    > 10
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

总结

本期简单演示了一下vector+where的SQL查询操作,除了常规where,还可以多表联查,例如按范式将大小、形状、颜色存放在其他表中,这些以后再做演示。
老规矩,知道写了些啥。

这篇关于数据库管理-第158期 Oracle Vector DB AI-09(20240304)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773186

相关文章

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例