【NR 定位】3GPP NR Positioning 5G定位标准解读(三)

2024-03-04 10:28

本文主要是介绍【NR 定位】3GPP NR Positioning 5G定位标准解读(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 前言

5 NG-RAN UE定位架构

5.1 架构

5.2 UE定位操作

5.3 NG-RAN定位操作

5.3.1 通用NG-RAN定位操作

5.3.2 OTDOA定位支持

5.3.3 广播辅助信息支持

5.3.4 NR RAT相关定位支持

5.4 NG-RAN中与UE定位相关的元素功能描述

5.4.1 用户设备(UE)

5.4.2 gNB

5.4.3 ng-eNB

5.4.4 位置管理功能(LMF)

5.4.5 定位参考单元(PRU)


 前言

3GPP NR Positioning 5G定位标准:3GPP TS 38.305 V18

 3GPP 标准网址:Directory Listing /ftp/

【NR 定位】3GPP NR Positioning 5G定位标准解读(一)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(二)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(三)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(四)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(五)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(六)-CSDN博客

5 NG-RAN UE定位架构

5.1 架构

图5.1-1展示了5GS中适用于具有NR或E-UTRA接入的UE定位的架构。该定位架构还支持如图5.1-1所示的NR PC5接口。当UE位于NG-RAN覆盖范围内(如图5.1-1中的UE A和UE B)和位于NG-RAN覆盖范围外(如图5.1-1中的UE C和UE D)时,均可以支持侧链路定位。

AMF从另一个实体(例如GMLC或UE)接收与特定目标UE相关联的某种位置服务请求,或者AMF本身决定代表特定目标UE发起某种位置服务(例如,用于来自UE的IMS紧急呼叫),如TS 23.502 [26]和TS 23.273 [35]所述。然后,AMF将位置服务请求发送到LMF。LMF处理位置服务请求,这可能包括将辅助数据传输到目标UE以辅助基于UE的和/或由UE辅助的定位,和/或可能包括对目标UE的定位。然后,LMF将位置服务的结果返回给AMF(例如,UE的位置估计)。在由除AMF以外的实体(例如GMLC或UE)请求位置服务的情况下,AMF将位置服务结果返回给该实体。

NG-RAN节点可以控制多个TRP/TP,例如远程无线电头端或仅支持DL-PRS的TP,以支持基于PRS的TBS。

LMF可能具有与E-SMLC的专有信令连接,这可能使LMF能够访问来自E-UTRAN的信息(例如,支持使用由目标UE获得的来自E-UTRAN中的eNB和/或仅PRS TP的信号的下行链路测量值的OTDOA进行E-UTRA定位方法)。LMF与E-SMLC之间的信令交互的详细信息不在本规范的范围内。

LMF可能具有与SLP的专有信令连接。SLP是负责用户平面定位的SUPL实体。用户平面定位的更多详细信息在[15][16]中提供。LMF与SLP之间的信令交互的详细信息不在本规范的范围内。

Figure 5.1-1: UE Positioning Overall Architecture applicable to NG-RAN

在gNB架构分离的情况下,gNB-DU可以包括TRP功能,其中TRP功能可以支持TP、RP或TP和RP的功能。包括TRP功能的gNB-DU不需要提供小区服务。

5.2 UE定位操作

为了支持目标UE的定位以及向具有5GS中NG-RAN接入的UE提供位置辅助数据,位置相关功能如图5.1-1所示架构进行分布,并在TS 23.501 [2]和TS 23.273 [35]中进行了更详细的说明。适用于UE、NG-RAN和LMF的任何位置服务的整体事件序列如图5.2-1所示。

请注意,当AMF在UE处于CM-IDLE状态时接收到位置服务请求时,AMF会执行网络触发的服务请求,如TS 23.502 [26]和TS 23.273 [35]中所定义,以便与UE建立信令连接并分配特定的服务gNB或ng-eNB。在图5.2-1所示流程开始之前,假设UE已处于连接模式;也就是说,在步骤1a之前可能需要将UE带到连接模式的任何信令都没有显示。然而,在定位仍在进行时,信令连接可能会稍后释放(例如,由于信令和数据不活动,由NG-RAN节点释放)。

Figure 5.2-1: Location Service Support by NG-RAN

1a. 或者:5GC中的某些实体(例如GMLC)向服务AMF请求针对目标UE的某些位置服务(例如定位)。
1b. 或者:目标UE的服务AMF确定需要某些位置服务(例如,为了定位UE的紧急呼叫)。
1c. 或者:UE在NAS级别向服务AMF请求某些位置服务(例如定位或提供辅助数据)。
2. AMF将位置服务请求转移到LMF。
3a. LMF与NG-RAN中的服务和可能的相邻ng-eNB或gNB一起启动定位程序,例如获取定位测量或辅助数据。
3b. 除了步骤3a或代替步骤3a,LMF与UE一起启动定位程序,例如获取位置估计或定位测量,或将位置辅助数据转移到UE。
4. LMF向AMF提供位置服务响应,并包括任何所需的结果,例如成功或失败的指示,以及如果请求并获得,则为UE的位置估计。
5a. 如果执行了步骤1a,AMF将位置服务响应返回给步骤1a中的5GC实体,并包括任何所需的结果,例如UE的位置估计。
5b. 如果发生了步骤1b,AMF使用在步骤4中接收到的位置服务响应来辅助在步骤1b中触发此操作的服务(例如,可以向GMLC提供与紧急呼叫相关的位置估计)。
5c. 如果执行了步骤1c,AMF将位置服务响应返回给UE,并包括任何所需的结果,例如UE的位置估计。

图5.2-1中的步骤3a和3b适用于NG-RAN,并在本规范中进行了更详细的定义。图5.2-1中的其他步骤仅适用于5GC,并在TS 23.502 [26]和TS 23.273 [35]中进行了更详细的描述。

步骤3a和3b可以涉及使用不同的定位方法来获取目标UE的位置相关测量值,并从中计算位置估计以及可能的其他信息,如速度。

5.3 NG-RAN定位操作

5.3.1 通用NG-RAN定位操作

除了对特定UE的位置服务支持外,LMF还可以与NG-RAN中的元素进行交互,以获取测量信息,帮助辅助所有UE的一个或多个定位方法。LMF还可以与NG-RAN节点交互,以提供用于广播的辅助数据信息。

5.3.2 OTDOA定位支持

LMF可以与任何可通过AMF访问并具备与LMF进行信令交互的ng-eNB进行交互,以获取位置相关信息,支持E-UTRA定位方法的OTDOA,包括基于PRS的E-UTRA TBS。这些信息可以包括与TP相关的定时信息,关于绝对GNSS时间或其他TP的定时,以及关于支持的小区和TP的信息,包括PRS调度。

LMF与ng-eNB之间的信令访问可以通过任何具有与LMF和ng-eNB进行信令交互的AMF来实现。

如果UE由NR小区服务,LMF还可以与任何可通过AMF访问并具备与LMF进行信令交互的gNB进行交互,以获取NR小区定时信息,以支持E-UTRA定位方法的OTDOA。

5.3.3 广播辅助信息支持

LMF可以与任何可通过AMF访问并具备与LMF进行信令交互的NG-RAN节点进行交互,以提供用于广播的辅助数据信息。这些信息可以包括定位系统信息块(posSIBs)以及辅助信息元数据、广播小区和广播周期性。

LMF与NG-RAN节点之间的信令访问可以通过任何具有与LMF和NG-RAN节点进行信令交互的AMF来实现。

5.3.4 NR RAT相关定位支持

LMF可以与任何可通过AMF访问并具备与LMF进行信令交互的gNB进行交互,以获取位置相关信息,支持NR RAT相关的定位方法。这些信息可以包括与TRP相关的定时信息,关于绝对GNSS时间或其他TRP的定时,以及关于支持的小区和TRP的信息,包括PRS调度。

当LMF为UE确定需要gNB测量的定位方法时,LMF可以与gNB交互以支持该定位方法。LMF可以请求gNB为UE配置SRS,gNB可以向LMF响应SRS配置。当SRS配置更改时,gNB可以向LMF提供更新的SRS配置。如果为UE配置了半持久性或非周期性SRS,LMF可以激活/停用SRS。当UE发送SRS时,LMF可以请求多个TRP执行上行链路测量并报告结果。

5.4 NG-RAN中与UE定位相关的元素功能描述

5.4.1 用户设备(UE)

UE可以对来自NG-RAN的下行链路信号、来自其他UE的侧链路信号以及其他来源(如E-UTRAN、不同的GNSS和TBS系统、WLAN接入点、蓝牙信标、UE气压和运动传感器)进行测量。要进行的测量将由所选的定位方法决定。

UE还可以包含LCS应用程序,或者通过UE访问的网络通信或通过UE中的另一个应用程序访问LCS应用程序。此LCS应用程序可能包括确定UE位置所需的测量和计算功能,无论是否需要网络辅助。这超出了本规范的范围。

例如,UE还可以包含独立的定位功能(如GPS),从而能够独立于NG-RAN传输报告其位置。具有独立定位功能的UE还可以利用从网络获得的辅助信息。

5.4.2 gNB

gNB是NG-RAN的网络元素,可以为目标UE提供测量信息,并将此信息通信给LMF。

为了支持NR RAT相关定位,gNB可以对目标UE的无线电信号进行测量,并提供用于位置估计的测量结果。gNB可以为多个TRP提供服务,包括例如远程无线电头、仅UL-SRS的RP和仅DL-PRS的TP。对于NTN,TRP可能位于卫星上。

gNB可以在定位系统信息消息中广播从LMF接收的辅助数据信息。

5.4.3 ng-eNB

ng-eNB是NG-RAN的网络元素,可以提供用于位置估计的测量结果,对目标UE的无线电信号进行测量,并将这些测量通信给LMF。

ng-eNB根据LMF的请求(按需或定期)进行测量。

ng-eNB可以为多个TP提供服务,包括例如远程无线电头和仅用于基于PRS的TBS定位的E-UTRA的仅PRS TP。

ng-eNB可以在定位系统信息消息中广播从LMF接收的辅助数据信息。

5.4.4 位置管理功能(LMF)

LMF管理对不同目标UE的位置服务的支持,包括UE的定位和向UE提供辅助数据。LMF可以与为目标UE服务的gNB或服务的ng-eNB交互,以获得UE的位置测量,包括由NG-RAN进行的上行链路测量和由UE进行的下行链路测量,这些测量是作为其他功能(如支持切换)的一部分提供给NG-RAN的。

如果需要特定的位置服务,LMF可以与目标UE交互以提供辅助数据,或者如果请求,可以获得位置估计。

LMF可以与多个NG-RAN节点交互,以提供用于广播的辅助数据信息。用于广播的辅助数据信息可以选择性地由LMF进行分段和/或加密。LMF还可以与AMF交互,以如TS 23.273 [35]中更详细描述的那样向AMF提供加密密钥数据信息。

对于目标UE的定位,LMF根据可能包括LCS客户端类型、所需QoS、UE定位能力、gNB定位能力和ng-eNB定位能力等因素决定要使用的定位方法。然后,LMF在UE、服务gNB和/或服务ng-eNB中调用这些定位方法。定位方法可以为基于UE的定位方法产生位置估计,和/或为基于UE辅助和网络的定位方法产生定位测量。LMF可以组合所有收到的结果,并为目标UE确定单个位置估计(混合定位)。还可以确定其他信息,如位置估计的准确性和速度。

LMF可以与AMF交互,以如TS 23.273 [35]中所述向AMF提供(更新的)UE定位能力,并从AMF接收存储的UE定位能力。

对于NTN,OAM通过配置LMF以获取卫星相关信息(如TS 38.300 [52]中所述),以及TRP(s)和卫星(s)之间的关联。

5.4.5 定位参考单元(PRU)

位于已知位置的定位参考单元(PRU)可以执行定位测量(例如,RSTD、RSRP、UE Rx-Tx时间差测量、DL-RSCPD、DL-RSCP等),并将这些测量结果报告给位置服务器。此外,PRU可以发送SRS,使TRP能够测量并报告来自已知位置PRU的上行链路定位测量值(例如,RTOA、UL-AoA、gNB Rx-Tx时间差、UL-RSCP等)。位置服务器可以将PRU的测量结果与预期在已知PRU位置的测量结果进行比较,以确定其他附近目标设备的校正项。然后,可以根据先前确定的校正项来校正其他目标设备的下行链路和/或上行链路位置测量值。

从位置服务器的角度来看,PRU功能是通过具有已知位置的UE实现的。

这篇关于【NR 定位】3GPP NR Positioning 5G定位标准解读(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772884

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地