Codeforces Round 930 (Div. 2 ABCDEF题) 视频讲解

2024-03-04 05:52

本文主要是介绍Codeforces Round 930 (Div. 2 ABCDEF题) 视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A. Shuffle Party

Problem Statement

You are given an array a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an. Initially, a i = i a_i=i ai=i for each 1 ≤ i ≤ n 1 \le i \le n 1in.

The operation swap ( k ) \texttt{swap}(k) swap(k) for an integer k ≥ 2 k \ge 2 k2 is defined as follows:

  • Let d d d be the largest divisor † ^\dagger of k k k which is not equal to k k k itself. Then swap the elements a d a_d ad and a k a_k ak.

Suppose you perform swap ( i ) \texttt{swap}(i) swap(i) for each i = 2 , 3 , … , n i=2,3,\ldots, n i=2,3,,n in this exact order. Find the position of 1 1 1 in the resulting array. In other words, find such j j j that a j = 1 a_j = 1 aj=1 after performing these operations.

† ^\dagger An integer x x x is a divisor of y y y if there exists an integer z z z such that y = x ⋅ z y = x \cdot z y=xz.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The only line of each test case contains one integer n n n ( 1 ≤ n ≤ 1 0 9 1 \le n \le 10^9 1n109) — the length of the array a a a.

Output

For each test case, output the position of 1 1 1 in the resulting array.

Example

Example

input
4
1
4
5
120240229
output
1
4
4
67108864

Note

In the first test case, the array is [ 1 ] [1] [1] and there are no operations performed.

In the second test case, a a a changes as follows:

  • Initially, a a a is [ 1 , 2 , 3 , 4 ] [1,2,3,4] [1,2,3,4].
  • After performing swap ( 2 ) \texttt{swap}(2) swap(2), a a a changes to [ 2 ‾ , 1 ‾ , 3 , 4 ] [\underline{2},\underline{1},3,4] [2,1,3,4] (the elements being swapped are underlined).
  • After performing swap ( 3 ) \texttt{swap}(3) swap(3), a a a changes to [ 3 ‾ , 1 , 2 ‾ , 4 ] [\underline{3},1,\underline{2},4] [3,1,2,4].
  • After performing swap ( 4 ) \texttt{swap}(4) swap(4), a a a changes to [ 3 , 4 ‾ , 2 , 1 ‾ ] [3,\underline{4},2,\underline{1}] [3,4,2,1].

Finally, the element 1 1 1 lies on index 4 4 4 (that is, a 4 = 1 a_4 = 1 a4=1). Thus, the answer is 4 4 4.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve()
{int n;cin >> n;int i = 1;while (i * 2 <= n) i *= 2;cout << i << endl;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

B. Binary Path

Problem Statement

You are given a 2 × n 2 \times n 2×n grid filled with zeros and ones. Let the number at the intersection of the i i i-th row and the j j j-th column be a i j a_{ij} aij.

There is a grasshopper at the top-left cell ( 1 , 1 ) (1, 1) (1,1) that can only jump one cell right or downwards. It wants to reach the bottom-right cell ( 2 , n ) (2, n) (2,n). Consider the binary string of length n + 1 n+1 n+1 consisting of numbers written in cells of the path without changing their order.

Your goal is to:

  1. Find the lexicographically smallest † ^\dagger string you can attain by choosing any available path;
  2. Find the number of paths that yield this lexicographically smallest string.

† ^\dagger If two strings s s s and t t t have the same length, then s s s is lexicographically smaller than t t t if and only if in the first position where s s s and t t t differ, the string s s s has a smaller element than the corresponding element in t t t.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 2 ⋅ 1 0 5 2 \le n \le 2 \cdot 10^5 2n2105).

The second line of each test case contains a binary string a 11 a 12 … a 1 n a_{11} a_{12} \ldots a_{1n} a11a12a1n ( a 1 i a_{1i} a1i is either 0 0 0 or 1 1 1).

The third line of each test case contains a binary string a 21 a 22 … a 2 n a_{21} a_{22} \ldots a_{2n} a21a22a2n ( a 2 i a_{2i} a2i is either 0 0 0 or 1 1 1).

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output two lines:

  1. The lexicographically smallest string you can attain by choosing any available path;
  2. The number of paths that yield this string.

Example

Example

input
3
2
00
00
4
1101
1100
8
00100111
11101101
output
000
2
11000
1
001001101
4

Note

In the first test case, the lexicographically smallest string is 000 \mathtt{000} 000. There are two paths that yield this string:

In the second test case, the lexicographically smallest string is 11000 \mathtt{11000} 11000. There is only one path that yields this string:

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve()
{int n;string s[2];cin >> n >> s[0] >> s[1];int p = n - 1;for (int i = 1; i < n; i ++)if (s[0][i] != '0' && s[1][i - 1] == '0'){p = i - 1;break;}string res;for (int i = 0; i <= p; i ++)res += s[0][i];res += s[1][p];for (int i = p + 1; i < n; i ++)res += s[1][i];int lst = 0;for (int i = n - 1, j = n; i >= 0; i --, j --)if (res[j] != s[1][i]){lst = i + 1;break;}cout << res << endl;cout << p - lst + 1 << endl;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

C. Bitwise Operation Wizard

Problem Statement

There is a secret sequence p 0 , p 1 , … , p n − 1 p_0, p_1, \ldots, p_{n-1} p0,p1,,pn1, which is a permutation of { 0 , 1 , … , n − 1 } \{0,1,\ldots,n-1\} {0,1,,n1}.

You need to find any two indices i i i and j j j such that p i ⊕ p j p_i \oplus p_j pipj is maximized, where ⊕ \oplus denotes the bitwise XOR operation.

To do this, you can ask queries. Each query has the following form: you pick arbitrary indices a a a, b b b, c c c, and d d d ( 0 ≤ a , b , c , d < n 0 \le a,b,c,d < n 0a,b,c,d<n). Next, the jury calculates x = ( p a ∣ p b ) x = (p_a \mid p_b) x=(papb) and y = ( p c ∣ p d ) y = (p_c \mid p_d) y=(pcpd), where ∣ | denotes the bitwise OR operation. Finally, you receive the result of comparison between x x x and y y y. In other words, you are told if x < y x < y x<y, x > y x > y x>y, or x = y x = y x=y.

Please find any two indices i i i and j j j ( 0 ≤ i , j < n 0 \le i,j < n 0i,j<n) such that p i ⊕ p j p_i \oplus p_j pipj is maximum among all such pairs, using at most 3 n 3n 3n queries. If there are multiple pairs of indices satisfying the condition, you may output any one of them.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 3 1 \le t \le 10^3 1t103). The description of the test cases follows.

Interaction

The first line of each test case contains one integer n n n ( 2 ≤ n ≤ 1 0 4 2 \le n \le 10^4 2n104). At this moment, the permutation p 0 , p 1 , … , p n − 1 p_0, p_1, \ldots, p_{n-1} p0,p1,,pn1 is chosen. The interactor in this task is not adaptive. In other words, the sequence p p p is fixed in every test case and does not change during the interaction.

To ask a query, you need to pick four indices a a a, b b b, c c c, and d d d ( 0 ≤ a , b , c , d < n 0 \le a,b,c,d < n 0a,b,c,d<n) and print the line of the following form:

  • “? a b c d”

After that, you receive:

  • “<” if ( p a ∣ p b ) < ( p c ∣ p d ) (p_a \mid p_b) < (p_c \mid p_d) (papb)<(pcpd);
  • “=” if ( p a ∣ p b ) = ( p c ∣ p d ) (p_a \mid p_b) = (p_c \mid p_d) (papb)=(pcpd);
  • “>” if ( p a ∣ p b ) > ( p c ∣ p d ) (p_a \mid p_b) > (p_c \mid p_d) (papb)>(pcpd).

You can make at most 3 n 3n 3n queries of this form.

Next, if your program has found a pair of indices i i i and j j j ( 0 ≤ i , j < n 0 \le i, j < n 0i,j<n) such that p i ⊕ p j p_i \oplus p_j pipj is maximized, print the line of the following form:

  • “! i j”

Note that this line is not considered a query and is not taken into account when counting the number of queries asked.

After this, proceed to the next test case.

If you make more than 3 n 3n 3n queries during an interaction, your program must terminate immediately, and you will receive the Wrong Answer verdict. Otherwise, you can get an arbitrary verdict because your solution will continue to read from a closed stream.

After printing a query or the answer for a test case, do not forget to output the end of line and flush the output. Otherwise, you will get the verdict Idleness Limit Exceeded. To do this, use:

  • fflush(stdout) or cout.flush() in C++;
  • System.out.flush() in Java;
  • flush(output) in Pascal;
  • stdout.flush() in Python;
  • see the documentation for other languages.

It is guaranteed that the sum of n n n over all test cases does not exceed 1 0 4 10^4 104.

Hacks

To hack, follow the test format below.

The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 3 1 \le t \le 10^3 1t103). The description of the test cases follows.

The first line of each test case contains one integer n n n ( 2 ≤ n ≤ 1 0 4 2 \le n \le 10^4 2n104).

The second line of each test case contains n n n integers p 0 , p 1 , … , p n − 1 p_0,p_1,\ldots,p_{n-1} p0,p1,,pn1, which represent a permutation of integers from 0 0 0 to n − 1 n - 1 n1.

The sum of n n n over all test cases should not exceed 1 0 4 10^4 104.

Example

input
2
4
<
=
>

2

output
? 0 2 3 1
? 1 1 2 3
? 1 2 0 3
! 3 2
! 0 1

Note

In the first test case, the hidden permutation is p = [ 0 , 3 , 1 , 2 ] p=[0,3,1,2] p=[0,3,1,2].

For the query “? 0 2 3 1”, the jury return “<” because ( p 0 ∣ p 2 ) = ( 0 ∣ 1 ) = 1 < ( p 3 ∣ p 1 ) = ( 2 ∣ 3 ) = 3 (p_0 \mid p_2) = (0 \mid 1) =1 < (p_3 \mid p_1) = (2 \mid 3) = 3 (p0p2)=(01)=1<(p3p1)=(23)=3.

For the query “? 1 1 2 3”, the jury return “=” because ( p 1 ∣ p 1 ) = ( 3 ∣ 3 ) = 3 = ( p 2 ∣ p 3 ) = ( 1 ∣ 2 ) = 3 (p_1 \mid p_1) = (3\mid 3)= 3 = (p_2 \mid p_3) = (1 \mid 2)=3 (p1p1)=(33)=3=(p2p3)=(12)=3.

For the query “? 1 2 0 3”, the jury return “>” because ( p 1 ∣ p 2 ) = ( 3 ∣ 1 ) = 3 > ( p 0 ∣ p 3 ) = ( 0 ∣ 2 ) = 2 (p_1 \mid p_2) = (3 \mid 1) = 3 > (p_0 \mid p_3) = (0\mid 2)=2 (p1p2)=(31)=3>(p0p3)=(02)=2.

The answer i = 3 i = 3 i=3 and j = 2 j = 2 j=2 is valid: ( p 3 ⊕ p 2 ) = ( 2 ⊕ 1 ) = 3 (p_3 \oplus p_2) = (2 \oplus 1) = 3 (p3p2)=(21)=3 is indeed equal to the maximum possible value of p i ⊕ p j p_i \oplus p_j pipj. Another valid answer would be i = 0 i=0 i=0 and j = 1 j=1 j=1. As the number of queries does not exceed 3 n = 12 3n=12 3n=12, the answer is considered correct.

In the second test case, n = 2 n = 2 n=2, so p p p is either [ 0 , 1 ] [0, 1] [0,1] or [ 1 , 0 ] [1, 0] [1,0]. In any case, p 0 ⊕ p 1 = 1 p_0 \oplus p_1 = 1 p0p1=1 is maximum possible.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;int ask(int a, int b, int c, int d)
{cout << "? " << a << " " << b << " " << c << " " << d << endl;char t;cin >> t;if (t == '=') return 0;else if (t == '<') return 1;else return 2;
}void solve()
{int n;cin >> n;int mx = 0;for (int i = 1; i < n; i ++)if (ask(mx, mx, i, i) == 1)mx = i;std::vector<int> best;best.push_back(0);for (int i = 1; i < n; i ++){int j = *best.begin(), v = ask(i, mx, j, mx);if (v == 2)best.clear(), best.push_back(i);else if (v == 0)best.push_back(i);}int mn = *best.begin();for (int i = 1; i < best.size(); i ++)if (ask(mn, mn, best[i], best[i]) == 2)mn = best[i];cout << "! " << mx << " " << mn << endl;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

D. Pinball

Problem Statement

There is a one-dimensional grid of length n n n. The i i i-th cell of the grid contains a character s i s_i si, which is either ‘<’ or ‘>’.

When a pinball is placed on one of the cells, it moves according to the following rules:

  • If the pinball is on the i i i-th cell and s i s_i si is ‘<’, the pinball moves one cell to the left in the next second. If s i s_i si is ‘>’, it moves one cell to the right.
  • After the pinball has moved, the character s i s_i si is inverted (i. e. if s i s_i si used to be ‘<’, it becomes ‘>’, and vice versa).
  • The pinball stops moving when it leaves the grid: either from the left border or from the right one.

You need to answer n n n independent queries. In the i i i-th query, a pinball will be placed on the i i i-th cell. Note that we always place a pinball on the initial grid.

For each query, calculate how many seconds it takes the pinball to leave the grid. It can be shown that the pinball will always leave the grid within a finite number of steps.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains an integer n n n ( 1 ≤ n ≤ 5 ⋅ 1 0 5 1 \le n \le 5 \cdot 10^5 1n5105).

The second line of each test case contains a string s 1 s 2 … s n s_1s_2 \ldots s_{n} s1s2sn of length n n n consisting of characters ‘<’ and ‘>’.

It is guaranteed that the sum of n n n over all test cases does not exceed 5 ⋅ 1 0 5 5 \cdot 10^5 5105.

Output

For each test case, for each i i i ( 1 ≤ i ≤ n 1 \le i \le n 1in) output the answer if a pinball is initially placed on the i i i-th cell.

Example

Example

input
3
3
><<
4
<<<<
6
<><<<>
output
3 6 5
1 2 3 4
1 4 7 10 8 1

Note

In the first test case, the movement of the pinball for i = 1 i=1 i=1 is shown in the following pictures. It takes the pinball 3 3 3 seconds to leave the grid.

The movement of the pinball for i = 2 i=2 i=2 is shown in the following pictures. It takes the pinball 6 6 6 seconds to leave the grid.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve()
{int n;string s;cin >> n >> s;s = '>' + s + '<';int lst = 0;std::vector<int> pre(n + 2, 0), suf(n + 2, 0), less(n + 2, 0), grt(n + 2, 0);std::vector<int> cnt1(n + 2, 0), cnt2(n + 2, 0), pos1, pos2;for (int i = 1; i <= n; i ++){cnt1[i] = cnt1[i - 1] + (s[i] == '>');pre[i] = pre[i - 1] + (s[i] == '>') * i;if (s[i] == '<' && lst) less[i] = less[i - 1] + i - lst, lst = i;else if (s[i] == '<') less[i] = less[i - 1], lst = i;else less[i] = less[i - 1];}lst = 0;for (int i = n; i >= 1; i --){suf[i] = suf[i + 1] + (s[i] == '<') * i, cnt2[i] = cnt2[i + 1] + (s[i] == '<');if (s[i] == '<') pos1.push_back(i);else pos2.push_back(i);if (s[i] == '>' && lst) grt[i] = grt[i + 1] + lst - i, lst = i;else if (s[i] == '>') grt[i] = grt[i + 1], lst = i;else grt[i] = grt[i + 1];}pos1.push_back(n + 1), pos2.push_back(0);sort(pos1.begin(), pos1.end());sort(pos2.begin(), pos2.end());for (int i = 1; i <= n; i ++){// cerr << i << ":";if (cnt1[i] > cnt2[i] || (cnt1[i] == cnt2[i] && s[i] == '<')){int tot = min(cnt1[i], cnt2[i]);if (!cnt2[i]){cout << n - i + 1 << " ";continue;}if (s[i] == '<'){auto it = lower_bound(pos1.begin(), pos1.end(), i), it2 = lower_bound(pos2.begin(), pos2.end(), i);int l1 = it - pos1.begin();int r1 = l1 + tot - 1;int r2 = ( -- it2) - pos2.begin();int l2 = r2 - tot + 1;cout << ((suf[pos1[l1]] - suf[pos1[r1] + 1]) - (pre[pos2[r2]] - pre[pos2[l2] - 1])) * 2 + less[pos1[r1]] - less[pos1[l1]] + (n - pos1[r1] + 1) << " ";}else{auto it = lower_bound(pos2.begin(), pos2.end(), i), it2 = lower_bound(pos1.begin(), pos1.end(), i);auto r1 = it - pos2.begin();int l1 = r1 - tot + 1;auto l2 = it2 - pos1.begin();int r2 = l2 + tot - 1;int v = ((suf[pos1[l2]] - suf[pos1[r2] + 1]) - (pre[pos2[r1]] - pre[pos2[l1] - 1])) * 2 + grt[pos2[l1 - 1]] - grt[pos2[r1]];cout << v + n - pos2[l1 - 1] + 1 << " ";}}else{int tot = min(cnt1[i], cnt2[i]);if (!cnt1[i]){cout << i << " ";continue;}if (s[i] == '<'){auto it = lower_bound(pos1.begin(), pos1.end(), i), it2 = lower_bound(pos2.begin(), pos2.end(), i);auto l1 = it - pos1.begin();int r1 = l1 + tot - 1;auto r2 = ( -- it2) - pos2.begin();int l2 = r2 - tot + 1;int v = ((suf[pos1[l1]] - suf[pos1[r1] + 1]) - (pre[pos2[r2]] - pre[pos2[l2] - 1])) * 2 + less[pos1[r1 + 1]] - less[pos1[l1]];cout << v + pos1[r1 + 1] << " ";}else{auto it = lower_bound(pos2.begin(), pos2.end(), i), it2 = lower_bound(pos1.begin(), pos1.end(), i);auto r1 = it - pos2.begin();int l1 = r1 - tot + 1;auto l2 = it2 - pos1.begin();int r2 = l2 + tot - 1;// cerr << l2 << " " << r2 << " " << l1 << " " << r1 << endl;int v = ((suf[pos1[l2]] - suf[pos1[r2] + 1]) - (pre[pos2[r1]] - pre[pos2[l1] - 1])) * 2 + grt[pos2[l1]] - grt[pos2[r1]];cout << v + pos2[l1] << " ";}}}cout << endl;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

E. Pokémon Arena

Problem Statement

You are at a dueling arena. You also possess n n n Pokémons. Initially, only the 1 1 1-st Pokémon is standing in the arena.

Each Pokémon has m m m attributes. The j j j-th attribute of the i i i-th Pokémon is a i , j a_{i,j} ai,j. Each Pokémon also has a cost to be hired: the i i i-th Pokémon’s cost is c i c_i ci.

You want to have the n n n-th Pokémon stand in the arena. To do that, you can perform the following two types of operations any number of times in any order:

  • Choose three integers i i i, j j j, k k k ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ j ≤ m 1 \le j \le m 1jm, k > 0 k > 0 k>0), increase a i , j a_{i,j} ai,j by k k k permanently. The cost of this operation is k k k.
  • Choose two integers i i i, j j j ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ j ≤ m 1 \le j \le m 1jm) and hire the i i i-th Pokémon to duel with the current Pokémon in the arena based on the j j j-th attribute. The i i i-th Pokémon will win if a i , j a_{i,j} ai,j is greater than or equal to the j j j-th attribute of the current Pokémon in the arena (otherwise, it will lose). After the duel, only the winner will stand in the arena. The cost of this operation is c i c_i ci.

Find the minimum cost you need to pay to have the n n n-th Pokémon stand in the arena.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains two integers n n n and m m m ( 2 ≤ n ≤ 4 ⋅ 1 0 5 2 \le n \le 4 \cdot 10^5 2n4105, 1 ≤ m ≤ 2 ⋅ 1 0 5 1 \le m \le 2 \cdot 10^5 1m2105, 2 ≤ n ⋅ m ≤ 4 ⋅ 1 0 5 2 \leq n \cdot m \leq 4 \cdot 10^5 2nm4105).

The second line of each test case contains n n n integers c 1 , c 2 , … , c n c_1, c_2, \ldots, c_n c1,c2,,cn ( 1 ≤ c i ≤ 1 0 9 1 \le c_i \le 10^9 1ci109).

The i i i-th of the following n n n lines contains m m m integers a i , 1 , a i , 2 , … , a i , m a_{i,1}, a_{i,2}, \ldots, a_{i,m} ai,1,ai,2,,ai,m ( 1 ≤ a i , j ≤ 1 0 9 1 \le a_{i,j} \le 10^9 1ai,j109).

It is guaranteed that the sum of n ⋅ m n \cdot m nm over all test cases does not exceed 4 ⋅ 1 0 5 4 \cdot 10^5 4105.

Output

For each test case, output the minimum cost to make the n n n-th Pokémon stand in the arena.

Example

input
4
3 3
2 3 1
2 9 9
6 1 7
1 2 1
3 3
2 3 1
9 9 9
6 1 7
1 2 1
4 2
2 8 3 5
18 24
17 10
1 10
1 1
6 3
21412674 3212925 172015806 250849370 306960171 333018900
950000001 950000001 950000001
821757276 783362401 760000001
570000001 700246226 600757652
380000001 423513575 474035234
315201473 300580025 287023445
1 1 1
output
2
6
17
1224474550

Note

In the first test case, the attribute array of the 1 1 1-st Pokémon (which is standing in the arena initially) is [ 2 , 9 , 9 ] [2,9,9] [2,9,9].

In the first operation, you can choose i = 3 i=3 i=3, j = 1 j=1 j=1, k = 1 k=1 k=1, and increase a 3 , 1 a_{3,1} a3,1 by 1 1 1 permanently. Now the attribute array of the 3 3 3-rd Pokémon is [ 2 , 2 , 1 ] [2,2,1] [2,2,1]. The cost of this operation is k = 1 k = 1 k=1.

In the second operation, you can choose i = 3 i=3 i=3, j = 1 j=1 j=1, and hire the 3 3 3-rd Pokémon to duel with the current Pokémon in the arena based on the 1 1 1-st attribute. Since a i , j = a 3 , 1 = 2 ≥ 2 = a 1 , 1 a_{i,j}=a_{3,1}=2 \ge 2=a_{1,1} ai,j=a3,1=22=a1,1, the 3 3 3-rd Pokémon will win. The cost of this operation is c 3 = 1 c_3 = 1 c3=1.

Thus, we have made the 3 3 3-rd Pokémon stand in the arena within the cost of 2 2 2. It can be proven that 2 2 2 is minimum possible.

In the second test case, the attribute array of the 1 1 1-st Pokémon in the arena is [ 9 , 9 , 9 ] [9,9,9] [9,9,9].

In the first operation, you can choose i = 2 i=2 i=2, j = 3 j=3 j=3, k = 2 k=2 k=2, and increase a 2 , 3 a_{2,3} a2,3 by 2 2 2 permanently. Now the attribute array of the 2 2 2-nd Pokémon is [ 6 , 1 , 9 ] [6,1,9] [6,1,9]. The cost of this operation is k = 2 k = 2 k=2.

In the second operation, you can choose i = 2 i=2 i=2, j = 3 j=3 j=3, and hire the 2 2 2-nd Pokémon to duel with the current Pokémon in the arena based on the 3 3 3-rd attribute. Since a i , j = a 2 , 3 = 9 ≥ 9 = a 1 , 3 a_{i,j}=a_{2,3}=9 \ge 9=a_{1,3} ai,j=a2,3=99=a1,3, the 2 2 2-nd Pokémon will win. The cost of this operation is c 2 = 3 c_2 = 3 c2=3.

In the third operation, you can choose i = 3 i=3 i=3, j = 2 j=2 j=2, and hire the 3 3 3-rd Pokémon to duel with the current Pokémon in the arena based on the 2 2 2-nd attribute. Since a i , j = a 1 , 2 = 2 ≥ 1 = a 2 , 2 a_{i,j}=a_{1,2}=2 \ge 1=a_{2,2} ai,j=a1,2=21=a2,2, the 3 3 3-rd Pokémon can win. The cost of this operation is c 3 = 1 c_3 = 1 c3=1.

Thus, we have made the 3 3 3-rd Pokémon stand in the arena within the cost of 6 6 6. It can be proven that 6 6 6 is minimum possible.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 4e6 + 10;int h[N], e[N], ne[N], w[N], idx, id, dist[N], Vis[N];void add(int a, int b, int c)
{e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}void solve()
{int n, m;cin >> n >> m;for (int i = 1; i <= 3 * n * m; i ++)h[i] = -1;idx = 0;std::vector<int> c(n + 1);std::vector<vector<int>> a(n + 1, vector<int>(m + 1));for (int i = 1; i <= n; i ++)cin >> c[i];for (int i = 1; i <= n; i ++)for (int j = 1; j <= m; j ++)cin >> a[i][j];id = n;for (int j = 1; j <= m; j ++){std::vector<PII> v;for (int i = 1; i <= n; i ++)v.emplace_back(a[i][j], i);sort(v.begin(), v.end(), greater<>());int source = id + 1;for (auto i : v)add(i.second, ++ id, c[i.second]), add( ++ id, i.second, 0);//, cout << id << " " << i.second << " " << 0 << endl;for (int i = source; i <= id; i += 2)add(i, i + 1, 0);//, cerr << i << " " << i + 1 << " " << 0 << endl;for (int i = source, k = 1; i + 2 <= id; i += 2, k ++)add(i + 2, i, v[k - 1].first - v[k].first);//, cerr << i + 2 << " " << i << " " << v[k - 1].first - v[k].first << endl;for (int i = source + 1; i + 2 <= id; i += 2)add(i, i + 2, 0);//, cerr << i << " " << i + 2 << " " << 0 << endl;}for (int i = 1; i <= id; i ++) dist[i] = 1e18, Vis[i] = 0;priority_queue<PII, vector<PII>, greater<PII>> Heap;Heap.emplace(0, n), dist[n] = 0;while (Heap.size()){auto Tmp = Heap.top();Heap.pop();int u = Tmp.second;if (Vis[u]) continue;Vis[u] = 1;for (int i = h[u]; ~i; i = ne[i]){int j = e[i];if (dist[j] > dist[u] + w[i]){dist[j] = dist[u] + w[i];Heap.emplace(dist[j], j);}}}cout << dist[1] << endl;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

F. Bitwise Paradox

Problem Statement

You are given two arrays a a a and b b b of size n n n along with a fixed integer v v v.

An interval [ l , r ] [l, r] [l,r] is called a good interval if ( b l ∣ b l + 1 ∣ … ∣ b r ) ≥ v (b_l \mid b_{l+1} \mid \ldots \mid b_r) \ge v (blbl+1br)v, where ∣ | denotes the bitwise OR operation. The beauty of a good interval is defined as max ⁡ ( a l , a l + 1 , … , a r ) \max(a_l, a_{l+1}, \ldots, a_r) max(al,al+1,,ar).

You are given q q q queries of two types:

  • “1 i x”: assign b i : = x b_i := x bi:=x;
  • “2 l r”: find the minimum beauty among all good intervals [ l 0 , r 0 ] [l_0,r_0] [l0,r0] satisfying l ≤ l 0 ≤ r 0 ≤ r l \le l_0 \le r_0 \le r ll0r0r. If there is no suitable good interval, output − 1 -1 1 instead.

Please process all queries.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains two integers n n n and v v v ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105, 1 ≤ v ≤ 1 0 9 1 \le v \le 10^9 1v109).

The second line of each testcase contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109).

The third line of each testcase contains n n n integers b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn ( 1 ≤ b i ≤ 1 0 9 1 \le b_i \le 10^9 1bi109).

The fourth line of each testcase contains one integer q q q ( 1 ≤ q ≤ 2 ⋅ 1 0 5 1 \le q \le 2 \cdot 10^5 1q2105).

The i i i-th of the following q q q lines contains the description of queries. Each line is of one of two types:

  • “1 i x” ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ x ≤ 1 0 9 ) 1 \le x \le 10^9) 1x109);
  • “2 l r” ( 1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn).

It is guaranteed that both the sum of n n n and the sum of q q q over all test cases do not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output the answers for all queries of the second type.

Example

input
3
3 7
2 1 3
2 2 3
4
2 1 3
1 2 5
2 2 3
2 1 3
4 5
5 1 2 4
4 2 3 3
6
2 1 4
1 3 15
2 3 4
2 2 4
1 2 13
2 1 4
1 5
6
4
1
2 1 1
output
-1 3 2
5 2 2 1
-1

Note

In the first test case, a = [ 2 , 1 , 3 ] a = [2, 1, 3] a=[2,1,3], b = [ 2 , 2 , 3 ] b = [2, 2, 3] b=[2,2,3], and v = 7 v = 7 v=7.

The first query is of the second type and has l = 1 l = 1 l=1 and r = 3 r = 3 r=3. The largest interval available is [ 1 , 3 ] [1, 3] [1,3], and its bitwise OR is b 1 ∣ b 2 ∣ b 3 = 3 b_1 \mid b_2 \mid b_3 = 3 b1b2b3=3 which is less than v v v. Thus, no good interval exists.

The second query asks to change b 2 b_2 b2 to 5 5 5, so b b b becomes [ 2 , 5 , 3 ] [2, 5, 3] [2,5,3].

The third query is of the second type and has l = 2 l = 2 l=2 and r = 3 r = 3 r=3. There are three possible intervals: [ 2 , 2 ] [2, 2] [2,2], [ 3 , 3 ] [3, 3] [3,3], and [ 2 , 3 ] [2, 3] [2,3]. However, b 2 = 5 < v b_2 = 5 < v b2=5<v, b 3 = 3 < v b_3 = 3 < v b3=3<v. So only the last interval is good: it has b 2 ∣ b 3 = 7 b_2 \mid b_3 = 7 b2b3=7. The answer is thus max ⁡ ( a 2 , a 3 ) = 3 \max(a_2, a_3) = 3 max(a2,a3)=3.

The fourth query is of the second type and has l = 1 l = 1 l=1 and r = 3 r = 3 r=3. There are three good intervals: [ 1 , 2 ] [1, 2] [1,2], [ 2 , 3 ] [2, 3] [2,3], and [ 1 , 3 ] [1, 3] [1,3]. Their beauty is 2 2 2, 3 3 3, 3 3 3 correspondingly. The answer is thus 2 2 2.

In the second test case, a = [ 5 , 1 , 2 , 4 ] a = [5, 1, 2, 4] a=[5,1,2,4], b = [ 4 , 2 , 3 , 3 ] b = [4, 2, 3, 3] b=[4,2,3,3], and v = 5 v = 5 v=5.

The first query has l = 1 l = 1 l=1 and r = 4 r = 4 r=4. The only good intervals are: [ 1 , 2 ] [1, 2] [1,2], [ 1 , 3 ] [1, 3] [1,3], [ 1 , 4 ] [1, 4] [1,4]. Their beauty is 5 5 5, 5 5 5, 5 5 5 correspondingly. The answer is thus 5 5 5.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>using namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10, INF = 2e9;int n, q, v;
int a[N], b[N];
int F1[N][32], lg[N];
struct Segment
{int l, r;int pre[32], suf[32], res;
}Tree[N << 2];void Init()
{int m = log2(n) + 1;for (int j = 0; j < m; j ++ )for (int i = 1; i + (1 << j) - 1 <= n; i ++ )if (!j) F1[i][j] = a[i];else F1[i][j] = max(F1[i][j - 1], F1[i + (1 << j - 1)][j - 1]);
}inline int Max(int l, int r)
{int len = r - l + 1;int k = lg[len];return max(F1[l][k], F1[r - (1 << k) + 1][k]);
}void Pushup(Segment &rt, Segment L, Segment R)
{rt.l = L.l, rt.r = R.r;for (int i = 30; i >= 0; i --)rt.pre[i] = L.pre[i] ? L.pre[i] : R.pre[i], rt.suf[i] = R.suf[i] ? R.suf[i] : L.suf[i];int pl = L.r, pr = R.l;rt.res = min(L.res, R.res);for (int i = 30; i >= 0; i --){int p = L.suf[i], q = R.pre[i];if (p) p = min(p, pl);if (q) q = max(q, pr);int lr = p ? Max(p, pr) : INF, rr = q ? Max(pl, q) : INF;if (lr < rr){if (v >> i & 1){if (lr < rt.res)pl = p;else break;}elsert.res = min(rt.res, lr);}else{if (v >> i & 1){if (rr < rt.res)pr = q;else break;}elsert.res = min(rt.res, rr);}}
}void Build(int u, int l, int r)
{Tree[u] = {l, r};if (l == r){if (b[l] > v) Tree[u].res = a[l];else Tree[u].res = INF;for (int i = 30; i >= 0; i --)if (b[l] >> i & 1)Tree[u].pre[i] = Tree[u].suf[i] = l;return;}int mid = l + r >> 1;Build(u << 1, l, mid), Build(u << 1 | 1, mid + 1, r);Pushup(Tree[u], Tree[u << 1], Tree[u << 1 | 1]);
}void Modify(int u, int x, int d)
{if (Tree[u].l == Tree[u].r){if (d > v) Tree[u].res = a[x];else Tree[u].res = INF;for (int i = 30; i >= 0; i --)if (d >> i & 1)Tree[u].pre[i] = Tree[u].suf[i] = x;elseTree[u].pre[i] = Tree[u].suf[i] = 0;return;}int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= x) Modify(u << 1, x, d);else Modify(u << 1 | 1, x, d);Pushup(Tree[u], Tree[u << 1], Tree[u << 1 | 1]);
}Segment Query(int u, int l, int r)
{if (Tree[u].l >= l && Tree[u].r <= r)return Tree[u];int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= l && mid < r){Segment res;Pushup(res, Query(u << 1, l, r), Query(u << 1 | 1, l, r));return res;}else if (mid >= l) return Query(u << 1, l, r);else return Query(u << 1 | 1, l, r);
}void solve()
{cin >> n >> v;v --;for (int i = 1, j = 1, k = 0; i <= n; i ++){if (j * 2 <= i) k ++, j *= 2;lg[i] = k;}for (int i = 1; i <= n; i ++)cin >> a[i];for (int i = 1; i <= n; i ++)cin >> b[i];Init(), Build(1, 1, n);cin >> q;while (q --){int op, l, r;cin >> op >> l >> r;if (op == 1)Modify(1, l, r);else{int v = Query(1, l, r).res;if (v == INF) printf("-1 ");else printf("%d ", v);}}printf("\n");
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Data;cin >> Data;while (Data --)solve();return 0;
}

视频讲解

Codeforces Round 930 (Div. 2)(A ~ F 题讲解)


最后祝大家早日在这里插入图片描述

这篇关于Codeforces Round 930 (Div. 2 ABCDEF题) 视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772184

相关文章

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java如何获取视频文件的视频时长

《Java如何获取视频文件的视频时长》文章介绍了如何使用Java获取视频文件的视频时长,包括导入maven依赖和代码案例,同时,也讨论了在运行过程中遇到的SLF4J加载问题,并给出了解决方案... 目录Java获取视频文件的视频时长1、导入maven依赖2、代码案例3、SLF4J: Failed to lo

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea