【Python】进阶学习:pandas--groupby()用法详解

2024-03-03 18:52

本文主要是介绍【Python】进阶学习:pandas--groupby()用法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📊【Python】进阶学习:pandas–groupby()用法详解

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 🤔 一、为什么需要groupby()?
  • 🎯 二、groupby()的基本用法
  • 📈 三、聚合运算
  • 🛠️ 四、高级用法与技巧
    • 🔧 应用自定义函数
    • 🔄 数据转换
    • 🔍 过滤数据
  • 🛠️ 五、实际案例应用
  • 🎉 六、总结
  • 🤝 七、期待与你共同进步

  👋 欢迎来到Python进阶学习之旅!今天,我们将深入探讨pandas库中非常强大的groupby()函数。groupby()函数在数据分析和数据清洗中发挥着关键作用,能够帮助我们轻松地对数据进行分组、聚合和转换。

🤔 一、为什么需要groupby()?

  在处理大量数据时,我们经常需要按照某个或多个特征对数据进行分组,以便更好地理解数据的结构和关系。例如,我们可能希望按照年份、地区或产品类别对数据进行分组,并对每个组进行聚合运算,如求和、平均值、最大值等。这时,groupby()函数就显得非常有用。

🎯 二、groupby()的基本用法

  首先,我们需要导入pandas库,并创建一个示例数据集。然后,我们可以使用groupby()函数按照指定的列对数据进行分组。

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的GroupBy对象
print(grouped)

输出:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002B2C070B8E0>

  上述代码将按照列’A’的值对DataFrame进行分组,并返回一个GroupBy对象。我们可以进一步对这个对象进行聚合运算。

📈 三、聚合运算

  GroupBy对象提供了多种聚合函数,如sum()mean()max()等。我们可以使用这些函数对每个组进行聚合运算。

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的对象
print(grouped)# 计算每个组的平均值
mean_grouped = grouped.mean()
print(mean_grouped)# 计算每个组的总和
sum_grouped = grouped.sum()
print(sum_grouped)

输出:

            C         D
A                      
bar  0.658173 -0.225388
foo  0.778100 -0.164148C         D
A                     
bar  1.97452 -0.676164
foo  3.89050 -0.820740

  除了内置的聚合函数外,我们还可以使用agg()函数应用自定义的聚合函数。例如,我们可以计算每个组的标准差:

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的对象
print(grouped)# 计算每个组的标准差
std_grouped = grouped.agg(np.std)
print(std_grouped)

输出:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002B2F480B880>C         D
A                      
bar  0.101229  0.274698
foo  0.996597  0.812362

🛠️ 四、高级用法与技巧

  除了基本的分组和聚合操作外,groupby()还提供了许多高级功能,如应用自定义函数、转换数据等。

🔧 应用自定义函数

  我们可以使用apply()方法应用自定义函数到每个组。例如,我们可以定义一个函数来计算每个组的最大值和最小值之差:

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的对象
print(grouped)# 定义一个自定义函数,计算每个组的最大值和最小值之差
def range_diff(group):return group.max() - group.min()# 使用apply()应用自定义函数
diff_grouped = grouped.apply(range_diff)
print(diff_grouped)

输出:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002ACBD83AA60>C         D
A                      
bar  2.497695  1.086924
foo  2.826518  2.063781

🔄 数据转换

  groupby()还提供了transform()方法,用于将聚合运算的结果广播到原始数据的每一行。这在数据转换中非常有用。

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的对象
print(grouped)# 使用transform()方法将每个组的平均值广播到原始数据的每一行
mean_transformed = grouped['C'].transform('mean')
print(mean_transformed)# 将转换后的平均值添加到原始DataFrame中
df['C_mean'] = mean_transformed
print(df)

输出:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000188A56DA8E0>
0    0.344876
1   -1.358760
2    0.344876
3   -1.358760
4    0.344876
5   -1.358760
6    0.344876
7    0.344876
Name: C, dtype: float64A         C         D    C_mean
0  foo  0.783914 -1.027288  0.344876
1  bar -2.072893 -0.972087 -1.358760
2  foo  0.035637 -0.315908  0.344876
3  bar -1.953068  0.409697 -1.358760
4  foo  0.576048 -0.258289  0.344876
5  bar -0.050318 -1.115734 -1.358760
6  foo  0.093456  0.106227  0.344876
7  foo  0.235322  1.365150  0.344876

🔍 过滤数据

  除了聚合和转换外,我们还可以使用filter()方法根据条件过滤出满足条件的组。

import numpy as np
import pandas as pd# 创建一个简单的DataFrame
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'C': np.random.randn(8),'D': np.random.randn(8)
}
df = pd.DataFrame(data)# 使用groupby按列'A'进行分组
grouped = df.groupby('A')# 打印分组后的对象
print(grouped)# 使用filter()方法过滤出满足条件的组(例如,组的大小大于3)
filtered_groups = grouped.filter(lambda x: len(x) > 3)
print(filtered_groups)

输出:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000015ADE2FA940>A         C         D
0  foo  1.967217  0.005976
2  foo  0.950149  0.098143
4  foo  0.568101  1.461587
6  foo -1.905337 -1.106591
7  foo -0.168686  0.692850

🛠️ 五、实际案例应用

  最后,让我们通过一个实际案例来演示如何应用groupby()函数进行数据分析和清洗。

  假设我们有一个包含销售数据的DataFrame,其中包含日期、地区、产品名称、销售额等列。我们希望按地区和产品名称对数据进行分组,并计算每个组的总销售额。

import numpy as np
import pandas as pd# 创建一个包含销售数据的DataFrame
sales_data = {'date': pd.date_range(start='2023-01-01', periods=100),'region': np.random.choice(['North', 'South', 'East', 'West'], size=100),'product': np.random.choice(['Product A', 'Product B', 'Product C'], size=100),'sales': np.random.rand(100) * 1000
}
df_sales = pd.DataFrame(sales_data)# 按地区和产品名称对数据进行分组,并计算总销售额
grouped_sales = df_sales.groupby(['region', 'product'])['sales'].sum().reset_index()# 打印分组后的销售额
print(grouped_sales)

输出:

   region    product        sales
0    East  Product A  2728.679432
1    East  Product B  1847.966730
2    East  Product C  4518.356763
3   North  Product A  5882.374531
4   North  Product B  5519.364196
5   North  Product C  4229.953852
6   South  Product A  5303.784425
7   South  Product B  2321.080682
8   South  Product C  4239.002167
9    West  Product A  1689.650513
10   West  Product B  4002.790867
11   West  Product C  4894.553548

  在这个案例中,我们首先创建了一个包含销售数据的DataFrame。然后,我们使用groupby()函数按地区和产品名称对数据进行分组,并使用sum()函数计算每个组的总销售额。最后,我们使用reset_index()函数将结果转换为一个新的DataFrame,并打印出来。

🎉 六、总结

  groupby()函数是pandas库中一个非常强大的工具,它允许我们按照一个或多个特征对数据进行分组,并对每个组进行聚合、转换和过滤操作。通过熟练掌握groupby()函数的用法,我们可以更高效地处理和分析大量数据,从而洞察数据的内在结构和关系。希望这篇博客能够帮助你更好地理解和应用groupby()函数!

🤝 七、期待与你共同进步

  🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏

  🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟

  📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬

  💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉

  🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉

这篇关于【Python】进阶学习:pandas--groupby()用法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770562

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud