前处理系列,结果整理。伽马校正,高斯差分滤波,对比度均衡,特征比对

本文主要是介绍前处理系列,结果整理。伽马校正,高斯差分滤波,对比度均衡,特征比对,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.sina.com.cn/s/blog_48e673350100vcg5.html

自己调研之后,写的伽马校正:

TestImgNum =1  ;00 335
str = strcat('.\',num2str(TestImgNum),'.bmp');
L_FaceImg = imread(str);
figure,imshow(uint8(L_FaceImg));
temp = double(L_FaceImg);
temp = temp./256;
gamma = 1/2.2;
 y = imadjust(temp,[0; 1],[0; 1],gamma)
% y=gamma(temp);%实现gamma校正
 y = gamma_filter(temp,gamma);
y = y.*256;
figure,imshow(uint8(y));

 

原理不明,只是会用而已。具体过程就是归一化人脸图像到[0,1]之间之后,运用imadjust函数,将其根据伽马值gamma转换到另一个范围在[0,1]的空间中去,然后乘以255加以倍数,输出即得伽马校正的结果。

 

xb调研完之后,写的代码:

L_FaceImg=double(L_FaceImg_org);
%L_FaceImg=L_FaceImg.^0.2;
gama=2;
p=255/255^(gama);p=(1/p)^(1/gama);
for i=1:imrow
    for j=1:imcol
        %for l=1:k
       % r(i,j,l)=floor(p*double(I(i,j,l))^(1/gama));
        L_FaceImg_gmma(i,j)=floor(p*L_FaceImg(i,j)^(1/gama));
        %end
    end
end
完全是原理性的东西。

高斯查分滤波,在网上查DoG查了好久,最后终于终于在pudn上面找到相关c代码,结果被xb两句话解决了……具体见下面:

low= imfilter(L_FaceImg_gmma,fspecial('gaussian',7,1),'same','replicate');
lowlow=imfilter(L_FaceImg_gmma,fspecial('gaussian',9,2),'same','replicate');

Resimage=low-lowlow;
其中L_FaceImg_gmma是经过伽马光线校正之后的图像,分别作滤波,之后差分相减,就得到高斯差分滤波的结果了……囧。明天去pudn上查查代码,看看是不是这样写的……

下面是fspecial函数的使用样例,写上来原因是蛮喜欢subplot函数,哇咔咔~

  I = imread('cameraman.tif');
       subplot(2,2,1);imshow(I);title('Original Image');
       H = fspecial('motion',20,45);
       MotionBlur = imfilter(I,H,'replicate');%replicate表示Input array values outside the bounds of the array  are assumed to equal the nearest array border value 输入值自动对齐到最近邻
       subplot(2,2,2);imshow(MotionBlur);title('Motion Blurred Image');
       H = fspecial('disk',10);
       blurred = imfilter(I,H,'replicate');
       subplot(2,2,3);imshow(blurred);title('Blurred Image');
       H = fspecial('unsharp');
       sharpened = imfilter(I,H,'replicate');
       subplot(2,2,4);imshow(sharpened);title('Sharpened Image');

 

对比均衡化还没搞明白,先把代码贴出来,供慢慢研究……

%Contrast Equalization.
a=0.1;
for i=1:imrow
       for j=1:imcol
       Resimage_temp(i,j)=(abs(Resimage(i,j)))^a;   
    end
end
 mu=mean(mean(Resimage_temp));
 Resimage=Resimage./(mu^(1/a));

tt=10;
for i=1:imrow
       for j=1:imcol
       Resimage_temp(i,j)=min(tt,(abs(Resimage(i,j)))^a);   
    end
end
mu=mean(mean(Resimage_temp));
Resimage=Resimage./(mu^(1/a));
Resimage=tt*tanh(Resimage/tt);
Resimage_max=max(max(Resimage));
Resimage_min=min(min(Resimage));
 for i=1:imrow
       for j=1:imcol
       Resimage(i,j)=(Resimage(i,j)-Resimage_min)/(Resimage_max-Resimage_min)*255;   
    end
 end
% imshow(uint8(Resimage));
 
 %提取LBP模板
% [result , Lbpface] = lbp(L_FaceImg);
 %figure,imshow(uint8(Lbpface));
L_FaceImg_bandpass=uint8(Resimage);

    TestImage = strcat('.\M00模糊脸_bandpass\',num2str(ii),'.bmp');
    imwrite(uint8(L_FaceImg_bandpass),TestImage,'bmp');
    figure,imshow(uint8(blurred));
end

 

晕死,就俩公式:前处理系列,结果整理。伽马校正,高斯差分滤波,还有什么呢,特征比对

其中a = 0.1,t= 10.看着挺简单,我咋就做不出来呢?

真是的啊我

这篇关于前处理系列,结果整理。伽马校正,高斯差分滤波,对比度均衡,特征比对的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770152

相关文章

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超