第一篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas库

本文主要是介绍第一篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传奇开心果博文系列

  • 系列博文目录
    • Python的自动化办公库技术点案例示例系列
  • 博文目录
    • 前言
    • 一、主要特点和功能介绍
    • 二、Series 示例代码
    • 三、DataFrame示例代码
    • 四、数据导入/导出示例代码
    • 五、数据清洗示例代码
    • 六、数据选择和过滤示例代码
    • 七、数据合并和连接示例代码
    • 八、数据分组和聚合示例代码
    • 九、数据转换示例代码
    • 十、时间序列数据处理示例代码
    • 十一、高效处理大型数据集示例代码
    • 十二、支持向量化操作示例代码
    • 十三、数据分析和可视化示例代码
    • 十四、社区支持举例说明
    • 十五、归纳总结

系列博文目录

Python的自动化办公库技术点案例示例系列

博文目录

前言

在这里插入图片描述
在这里插入图片描述Pandas是一个流行的Python数据处理库,提供了易于使用的数据结构和数据分析工具,使得在Python中进行数据清洗、数据分析和数据处理变得更加简单和高效。

一、主要特点和功能介绍

在这里插入图片描述
在这里插入图片描述以下是Pandas的一些主要特点和功能:

  1. 数据结构
    -Series:类似于一维数组,可以存储不同类型的数据,并带有标签(索引)。
    -DataFrame:类似于二维表格,由多个Series组成,每列可以是不同的数据类型。

  2. 数据操作
    -数据导入/导出:Pandas支持从各种数据源中导入数据,如CSV文件、Excel表格、数据库等,并可以将处理后的数据导出。
    -数据清洗:处理缺失数据、重复数据、异常值等。
    -数据选择和过滤:通过标签或位置选择数据,进行数据筛选和过滤。
    -数据合并和连接:合并多个数据集,支持不同类型的连接操作。
    -数据分组和聚合:按照指定的条件对数据进行分组,并进行聚合操作,如求和、平均值等。
    -数据转换:对数据进行排序、重塑、透视等操作。
    -时间序列数据处理:提供了强大的时间序列数据处理功能。

  3. 性能优势
    -Pandas基于NumPy构建,能够高效处理大型数据集。
    -支持向量化操作,避免了使用显式循环,提高了数据处理的效率。

  4. 灵活性
    -可以与其他Python库(如NumPy、Matplotlib等)结合使用,实现更复杂的数据分析和可视化任务。

  5. 社区支持
    -Pandas拥有庞大的社区支持和活跃的开发者社区,提供了丰富的文档、教程和示例,便于学习和使用。

总的来说,Pandas是一个功能强大且灵活的数据处理工具,适用于各种数据分析和数据处理任务。如果你需要进行数据清洗、数据分析或数据处理,Pandas通常是一个很好的选择。

二、Series 示例代码

在这里插入图片描述
在这里插入图片描述当创建一个Pandas Series 对象时,你可以传入一个包含数据的列表或数组,并可以选择性地指定索引。以下是一个简单的示例代码,演示如何创建一个包含不同类型数据并具有标签索引的 Pandas Series:

import pandas as pd# 创建一个包含不同类型数据的 Pandas Series
data = [10, 'Hello', 3.5, True]
index = ['A', 'B', 'C', 'D']# 使用数据列表和索引列表创建 Series 对象
series = pd.Series(data, index=index)# 打印 Series 对象
print(series)

在这个示例中,我们创建了一个包含整数、字符串、浮点数和布尔值的 Pandas Series,每个值都有一个对应的标签索引。运行这段代码后,你将看到类似以下输出:

A       10
B    Hello
C      3.5
D     True
dtype: object

这个 Series 包含了不同类型的数据,并且每个数据都与一个索引标签相关联。这使得在 Pandas 中处理数据时更加灵活和方便。

三、DataFrame示例代码

在这里插入图片描述
在这里插入图片描述当创建一个 Pandas DataFrame 时,你可以传入一个字典,其中键是列名,值是列数据(可以是列表、数组或 Series)。以下是一个简单的示例代码,演示如何创建一个包含不同数据类型的 Pandas DataFrame,每列可以是不同的数据类型:

import pandas as pd# 创建一个包含不同数据类型的 Pandas DataFrame
data = {'A': [1, 2, 3, 4],'B': ['apple', 'banana', 'cherry', 'date'],'C': [2.5, 3.7, 1.2, 4.9],'D': [True, False, True, False]
}# 使用字典创建 DataFrame 对象
df = pd.DataFrame(data)# 打印 DataFrame 对象
print(df)

在这个示例中,我们创建了一个包含整数、字符串、浮点数和布尔值的 Pandas DataFrame。每列的数据类型可以是不同的,这是 Pandas DataFrame 的一个重要特性。运行这段代码后,你将看到类似以下输出:

   A       B    C      D
0  1   apple  2.5   True
1  2  banana  3.7  False
2  3  cherry  1.2   True
3  4    date  4.9  False

这个 DataFrame 包含了四列数据,每列可以是不同的数据类型,类似于一个二维表格。Pandas DataFrame 提供了强大的数据操作功能,使得数据分析和处理变得更加简单和高效。

四、数据导入/导出示例代码

在这里插入图片描述
在这里插入图片描述Pandas 提供了丰富的功能来导入和导出数据,包括从 CSV 文件、Excel 表格、数据库等数据源中导入数据,并将处理后的数据导出到各种格式。以下是一些示例代码,演示如何使用 Pandas 进行数据导入和导出:

  1. 从 CSV 文件导入数据并将处理后的数据导出到 CSV 文件:
import pandas as pd# 从 CSV 文件导入数据
df = pd.read_csv('data.csv')# 处理数据...# 将处理后的数据导出到 CSV 文件
df.to_csv('processed_data.csv', index=False)
  1. 从 Excel 表格导入数据并将处理后的数据导出到 Excel 文件:
import pandas as pd# 从 Excel 表格导入数据
df = pd.read_excel('data.xlsx')# 处理数据...# 将处理后的数据导出到 Excel 文件
df.to_excel('processed_data.xlsx', index=False)
  1. 从数据库导入数据并将处理后的数据导出到数据库表:
import pandas as pd
import sqlite3# 连接到 SQLite 数据库
conn = sqlite3.connect('database.db')# 从数据库表导入数据
query = "SELECT * FROM table"
df = pd.read_sql_query(query, conn)# 处理数据...# 将处理后的数据导出到数据库表
df.to_sql('processed_table', conn, index=False, if_exists='replace')

通过这些示例代码,你可以了解如何使用 Pandas 从不同数据源中导入数据,并在处理后将数据导出到所需的格式中。Pandas 提供了简单而强大的方法来处理各种数据导入和导出任务,使得数据分析工作更加高效和便捷。

五、数据清洗示例代码

在这里插入图片描述
在这里插入图片描述在数据分析中,数据清洗是一个非常重要的步骤,它包括处理缺失数据、重复数据、异常值等问题。Pandas 提供了丰富的功能来进行数据清洗。以下是一些示例代码,演示如何使用 Pandas 进行数据清洗:

  1. 处理缺失数据:
import pandas as pd# 创建包含缺失数据的示例 DataFrame
data = {'A': [1, 2, None, 4],'B': ['apple', 'banana', 'cherry', None],'C': [2.5, None, 1.2, 4.9]
}df = pd.DataFrame(data)# 检查缺失数据
print(df.isnull())# 填充缺失数据
df.fillna(0, inplace=True)
  1. 处理重复数据:
import pandas as pd# 创建包含重复数据的示例 DataFrame
data = {'A': [1, 2, 2, 4],'B': ['apple', 'banana', 'banana', 'date']
}df = pd.DataFrame(data)# 检查重复数据
print(df.duplicated())# 删除重复数据
df.drop_duplicates(inplace=True)
  1. 处理异常值:
import pandas as pd# 创建包含异常值的示例 DataFrame
data = {'A': [1, 2, 3, 100],'B': ['apple', 'banana', 'cherry', 'date']
}df = pd.DataFrame(data)# 检查异常值
print(df[df['A'] > 10])# 替换异常值
df.loc[df['A'] > 10, 'A'] = 10

通过这些示例代码,你可以了解如何使用 Pandas 处理缺失数据、重复数据和异常值。数据清洗是数据分析过程中的关键步骤,有效的数据清洗可以提高数据分析的准确性和可靠性。

六、数据选择和过滤示例代码

在这里插入图片描述

在这里插入图片描述在 Pandas 中,你可以通过标签或位置选择数据,进行数据筛选和过滤。以下是一些示例代码,演示如何使用 Pandas 进行数据选择和过滤:

  1. 通过标签选择数据:
import pandas as pd# 创建示例 DataFrame
data = {'A': [1, 2, 3, 4, 5],'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']
}df = pd.DataFrame(data, index=['X', 'Y', 'Z', 'W', 'V'])# 通过标签选择单列数据
column_data = df['A']# 通过标签选择多列数据
multiple_columns_data = df[['A', 'B']]# 通过标签选择单行数据
row_data = df.loc['Z']# 通过标签选择多行数据
multiple_rows_data = df.loc[['X', 'Y']]
  1. 通过位置选择数据:
import pandas as pd# 创建示例 DataFrame
data = {'A': [1, 2, 3, 4, 5],'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']
}df = pd.DataFrame(data)# 通过位置选择单列数据
column_data = df.iloc[:, 0]# 通过位置选择多列数据
multiple_columns_data = df.iloc[:, [0, 1]]# 通过位置选择单行数据
row_data = df.iloc[2]# 通过位置选择多行数据
multiple_rows_data = df.iloc[[0, 1]]

通过这些示例代码,你可以了解如何使用 Pandas 通过标签或位置选择数据,进行数据筛选和过滤。Pandas 提供了灵活的方法来选择和操作数据,使得数据分析工作更加高效和便捷。

七、数据合并和连接示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以使用不同类型的连接操作来合并多个数据集。以下是一些示例代码,演示如何使用 Pandas 进行数据合并和连接:

  1. 使用 pd.concat() 进行数据合并:
import pandas as pd# 创建示例 DataFrame
data1 = {'A': [1, 2, 3],'B': ['apple', 'banana', 'cherry']
}data2 = {'A': [4, 5, 6],'B': ['date', 'elderberry', 'fig']
}df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)# 沿行方向合并两个 DataFrame
result = pd.concat([df1, df2])
  1. 使用 pd.merge() 进行数据连接:
import pandas as pd# 创建示例 DataFrame
data1 = {'key': ['K0', 'K1', 'K2'],'A': [1, 2, 3]
}data2 = {'key': ['K0', 'K1', 'K3'],'B': ['apple', 'banana', 'cherry']
}df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)# 内连接
result_inner = pd.merge(df1, df2, on='key', how='inner')# 左连接
result_left = pd.merge(df1, df2, on='key', how='left')# 右连接
result_right = pd.merge(df1, df2, on='key', how='right')# 外连接
result_outer = pd.merge(df1, df2, on='key', how='outer')

通过这些示例代码,你可以了解如何使用 Pandas 进行数据合并和连接。Pandas 提供了丰富的功能来支持不同类型的连接操作,使得合并多个数据集变得简单和灵活。

八、数据分组和聚合示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以使用数据分组和聚合功能来按照指定的条件对数据进行分组,并进行聚合操作,如求和、平均值等。以下是一些示例代码,演示如何使用 Pandas 进行数据分组和聚合:

import pandas as pd# 创建示例 DataFrame
data = {'Category': ['A', 'B', 'A', 'B', 'A', 'B'],'Value': [10, 20, 30, 40, 50, 60]
}df = pd.DataFrame(data)# 按照 'Category' 列进行分组,并计算每组的平均值
grouped = df.groupby('Category').mean()# 按照多列进行分组,并计算每组的总和
grouped_multiple = df.groupby(['Category']).sum()# 对多列进行分组,并同时计算多个聚合函数
grouped_multiple_functions = df.groupby('Category').agg({'Value': ['sum', 'mean']})# 对每个分组应用自定义的聚合函数
def custom_aggregation(x):return x.max() - x.min()custom_aggregated = df.groupby('Category').agg({'Value': custom_aggregation})# 对每个分组应用多个自定义的聚合函数
custom_aggregated_multiple = df.groupby('Category').agg({'Value': [custom_aggregation, 'mean']})

通过这些示例代码,你可以了解如何使用 Pandas 进行数据分组和聚合操作。Pandas 提供了强大的功能来轻松地对数据进行分组和应用各种聚合函数,帮助你更好地理解数据并进行数据分析。

九、数据转换示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以对数据进行各种转换操作,包括排序、重塑、透视等。以下是一些示例代码,演示如何使用 Pandas 进行数据转换:

  1. 数据排序:
import pandas as pd# 创建示例 DataFrame
data = {'A': [3, 2, 1, 4],'B': ['apple', 'banana', 'cherry', 'date']
}df = pd.DataFrame(data)# 按照 'A' 列进行升序排序
sorted_df = df.sort_values(by='A')
  1. 数据重塑(Pivot):
import pandas as pd# 创建示例 DataFrame
data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],'B': ['one', 'one', 'two', 'two', 'one', 'one'],'C': [1, 2, 3, 4, 5, 6]
}df = pd.DataFrame(data)# Pivot 操作
pivot_df = df.pivot(index='A', columns='B', values='C')
  1. 数据透视:
import pandas as pd# 创建示例 DataFrame
data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],'B': ['one', 'one', 'two', 'two', 'one', 'one'],'C': [1, 2, 3, 4, 5, 6]
}df = pd.DataFrame(data)# 数据透视表
pivot_table = df.pivot_table(index='A', columns='B', values='C', aggfunc='sum')

通过这些示例代码,你可以了解如何使用 Pandas 进行数据转换操作,包括排序、重塑和透视等。Pandas 提供了丰富的功能来帮助你对数据进行灵活的转换和分析。

十、时间序列数据处理示例代码

在这里插入图片描述
在这里插入图片描述Pandas 提供了强大的时间序列数据处理功能,可以帮助你轻松处理时间序列数据。以下是一些示例代码,演示如何使用 Pandas 处理时间序列数据:

  1. 创建时间序列数据:
import pandas as pd
import numpy as np# 创建一个时间范围为一周的时间序列数据
dates = pd.date_range('2024-02-26', periods=7)# 创建一个 DataFrame,使用时间序列作为索引
df = pd.DataFrame(np.random.randn(7, 3), index=dates, columns=['A', 'B', 'C'])
  1. 时间序列重采样:
# 将时间序列数据按照每月重新采样,并计算每月的平均值
monthly_resampled = df.resample('M').mean()
  1. 移动窗口统计:
# 计算时间序列数据的滚动平均值
rolling_mean = df['A'].rolling(window=3).mean()
  1. 时间序列数据的时区转换:
# 创建一个带有时区信息的时间戳
ts = pd.Timestamp('2024-02-26 08:00', tz='Europe/London')# 将时区转换为美国纽约时区
ts_ny = ts.tz_convert('America/New_York')

通过这些示例代码,你可以了解如何使用 Pandas 处理时间序列数据,包括创建时间序列数据、重采样、移动窗口统计以及时区转换等操作。Pandas 提供了丰富的功能来支持时间序列数据的处理和分析,让你能够更轻松地处理时间相关的数据。

十一、高效处理大型数据集示例代码

在这里插入图片描述

在这里插入图片描述Pandas 基于 NumPy 构建,能够高效处理大型数据集。以下是一些示例代码,演示如何使用 Pandas 处理大型数据集:

  1. 创建一个大型数据集:
import pandas as pd
import numpy as np# 创建一个包含100万行和3列的随机数据集
n = 1000000
data = {'A': np.random.rand(n),'B': np.random.rand(n),'C': np.random.rand(n)
}df = pd.DataFrame(data)
  1. 对大型数据集进行聚合操作:
# 计算每列的平均值
mean_values = df.mean()
  1. 对大型数据集进行筛选操作:
# 筛选出满足条件的行
filtered_data = df[df['A'] > 0.5]
  1. 对大型数据集进行分组和汇总操作:
# 按照 'B' 列进行分组,并计算每组的平均值
grouped_data = df.groupby('B').mean()

通过这些示例代码,你可以看到 Pandas 在处理大型数据集时的高效性。Pandas 提供了优化的数据结构和操作,使得处理大型数据集变得更加简单和高效。无论是数据聚合、筛选、分组还是其他操作,Pandas 都能够快速地处理大规模的数据,为数据分析和处理提供了强大的工具支持。

十二、支持向量化操作示例代码

在这里插入图片描述
在这里插入图片描述Pandas 支持向量化操作,这意味着你可以避免使用显式循环,而是直接对整个数据集执行操作,从而提高数据处理的效率。以下是一些示例代码,演示如何使用 Pandas 进行向量化操作:

  1. 向量化算术操作:
import pandas as pd
import numpy as np# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randint(0, 10, size=(5, 3)), columns=['A', 'B', 'C'])# 对整个 DataFrame 执行向量化算术操作
result = df['A'] + df['B'] * df['C']
  1. 向量化函数应用:
# 使用 apply 函数对整列数据应用自定义函数
df['D'] = df['A'].apply(lambda x: x**2)
  1. 向量化条件操作:
# 根据条件对 DataFrame 进行填充
df['E'] = np.where(df['C'] > 5, 'High', 'Low')

通过这些示例代码,你可以看到 Pandas 如何支持向量化操作,从而避免显式循环,提高数据处理的效率。向量化操作利用了底层的 NumPy 数组实现,能够高效地处理大型数据集,使得数据处理变得更加简洁和快速。在实际数据处理过程中,推荐尽可能使用向量化操作,以提高代码的执行效率。

十三、数据分析和可视化示例代码

在这里插入图片描述
在这里插入图片描述当与其他 Python 库(如 NumPy、Matplotlib 等)结合使用时,Pandas 可以实现更复杂的数据分析和可视化任务。以下是一些示例代码,展示了 Pandas 与 NumPy 和 Matplotlib 结合使用的情况:

  1. 结合 NumPy 进行数据处理:
import pandas as pd
import numpy as np# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randint(0, 10, size=(5, 3)), columns=['A', 'B', 'C'])# 使用 NumPy 函数对 DataFrame 进行操作
df['D'] = np.sqrt(df['A']**2 + df['B']**2)
  1. 结合 Matplotlib 进行数据可视化:
import matplotlib.pyplot as plt# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.rand(50, 2), columns=['X', 'Y'])# 绘制散点图
plt.scatter(df['X'], df['Y'])
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Scatter Plot')
plt.show()
  1. 结合 NumPy 和 Matplotlib 进行数据分析和可视化:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randn(100, 2), columns=['A', 'B'])# 计算移动平均值
df['MA'] = df['A'].rolling(window=10).mean()# 绘制折线图
plt.plot(df['A'], label='A')
plt.plot(df['MA'], label='Moving Average')
plt.legend()
plt.xlabel('Index')
plt.ylabel('Value')
plt.title('Moving Average Plot')
plt.show()

通过这些示例代码,你可以看到 Pandas 如何与 NumPy 和 Matplotlib 结合使用,实现更复杂的数据处理和可视化任务。这种结合可以让你充分利用各个库的优势,完成更多样化和复杂度更高的数据分析工作。无论是数据处理、分析还是可视化,这种结合都能为你提供强大的工具支持。

十四、社区支持举例说明

在这里插入图片描述Pandas拥有庞大的社区支持和活跃的开发者社区,提供了丰富的文档、教程和示例,让用户更容易学习和使用。以下是一些示例代码,展示了如何利用Pandas的文档、教程和示例资源:

  1. 查看Pandas官方文档:
import webbrowser# 打开Pandas官方文档网站
webbrowser.open('https://pandas.pydata.org/docs/')
  1. 查看Pandas官方教程:
import webbrowser# 打开Pandas官方教程网站
webbrowser.open('https://pandas.pydata.org/docs/getting_started/index.html')
  1. 查看Pandas官方示例库:
import webbrowser# 打开Pandas官方示例库网站
webbrowser.open('https://pandas.pydata.org/docs/getting_started/index.html#tutorials')

通过这些示例代码,你可以方便地访问Pandas的官方文档、教程和示例资源,这些资源对于学习和使用Pandas都非常有帮助。官方文档提供了详细的API参考和用例说明,官方教程则提供了入门指导和实用技巧,而官方示例库则包含了丰富的示例代码,帮助你更好地理解和应用Pandas库。利用这些资源,你可以更高效地学习和使用Pandas,从而更好地处理和分析数据。

十五、归纳总结

在这里插入图片描述Pandas 是一个强大的数据处理库,主要用于数据清洗、数据转换和数据分析。以下是一些关键的 Pandas 知识点的归纳总结:

  1. 数据结构:
    -Series:一维数据结构,类似于数组或列表。
    -DataFrame:二维数据结构,类似于表格,由多个 Series 组成。

  2. 数据导入与导出:
    -从 CSV、Excel、SQL 数据库等不同数据源导入数据。
    -将处理后的数据导出为 CSV、Excel 等格式。

  3. 数据查看与处理:
    -查看数据:head()、tail()、info()、describe() 等方法。
    -选择数据:使用 loc、iloc、[] 运算符。
    -缺失值处理:dropna()、fillna()。
    -重复值处理:drop_duplicates()。

  4. 数据筛选与排序:
    -条件筛选:使用布尔索引、query() 方法。
    -排序:sort_values()、sort_index()。

  5. 数据分组与聚合:
    -groupby():按照指定条件对数据进行分组。
    -聚合函数:sum()、mean()、count() 等。
    -多重索引:实现多层次的分组和聚合。

  6. 数据合并与连接:
    -concat():沿着指定轴合并多个 DataFrame。
    -merge():根据一个或多个键将不同 DataFrame 连接起来。

  7. 数据透视表与重塑:
    -pivot_table():创建数据透视表。
    -stack()、unstack():数据重塑操作。

  8. 时间序列数据处理:
    -时间索引:将时间列设置为索引。
    -日期范围:生成日期范围序列。
    -时序数据分析:时间重采样、移动窗口统计等操作。

  9. 大数据集处理:
    -分块处理:使用 chunksize 处理大型数据集。
    -内存优化:选择合适的数据类型、减少内存占用。

  10. 数据可视化:
    -与 Matplotlib、Seaborn 等库结合进行数据可视化。
    -绘制折线图、柱状图、散点图等图表。

在这里插入图片描述

以上是 Pandas 中一些常用的知识点,掌握这些知识可以帮助你更好地处理和分析数据。通过实践和不断学习,你可以更深入地了解 Pandas,并利用其强大功能解决实际数据处理问题。

这篇关于第一篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769555

相关文章

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画