Initialization of Node and Zone(linux 内存 结点内存区域的初始化)

2024-03-03 11:28

本文主要是介绍Initialization of Node and Zone(linux 内存 结点内存区域的初始化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux-6.2
UMA结构

入口函数为
build_all_zonelists(*pgdat)
-> 区分是否为系统刚刚启动
->__build_all_zonelists(*pgdat)
–> 加锁
–>build_zonelists(*pgdat)
重点来讲build_zonelists。
这个函数接收 struct pg_data_t 结构的指针,对该结构中的 node_zonelists 结构进行赋值初始化。人话:找到这个系统上的所有ZONE,并按照优先级顺序添加到node-zonelist上,作为备选列表提供给伙伴系统使用。
先总理一下需要涉及到的数据结构,否则都是空谈。结构有简略。

typedef struct pglist_data{struct zone node_zones[MAX_NR_ZONES];struct zonelist node_zonelists[MAX_ZONELISTS];
} pg_data_tstruct zonelist {struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
};struct zoneref {struct zone *zone;int zone_idx;
};enum zone_type {……
};

其中 enum zone_type 可以把它当作int整数来理解。

具体函数程序如下


static void build_zonelists(pg_data_t *pgdat)
{int node, local_node;struct zoneref *zonerefs;int nr_zones;local_node = pgdat->node_id;zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;nr_zones = build_zonerefs_node(pgdat, zonerefs);zonerefs += nr_zones;/** Now we build the zonelist so that it contains the zones* of all the other nodes.* We don't want to pressure a particular node, so when* building the zones for node N, we make sure that the* zones coming right after the local ones are those from* node N+1 (modulo N)*/for (node = local_node + 1; node < MAX_NUMNODES; node++) {if (!node_online(node))continue;nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);zonerefs += nr_zones;}for (node = 0; node < local_node; node++) {if (!node_online(node))continue;nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);zonerefs += nr_zones;}zonerefs->zone = NULL;zonerefs->zone_idx = 0;
}

第5行代码为获取当前node 结构中 node_zonelists (备选列表)区域的首个指针对应的 zoneref (实际备选值) 。

补充一段C语言指针的工作原理,可以跳过。
-> 指向运算符。
.访问对象。 两个有个区别来这,回头查一下。
首先,pgdat 作为存储在堆上面的内容具有固定地址,pgdat->node_zonelists[ZONELIST_FALLBACK] 利用-> 符号访问了 pgdat结构中的 node_zonelists 对象,由于初始化的时候这个对象占用了 MAX_ZONELISTS 个指针,具体用哪一个,需要用 ZONELIST_FALLBACK 来指定,针对在build函数里的调用来说,MAX_ZONELISTS = 0,即指向首地址。 这里的数据退化为指针,或者指针变为数组。怎样讲不重要,重点是这个时候汇编程序用的那个指针头ldr 会指向一个已经存在的有意义的地址(这个地址已经初始化确定了,在堆里面存在着) 有意思的来了,这个指针对应的值也是一个指针,因为 struct zonelist node_zonelists[MAX_ZONELISTS]; 它的含义就是 这个名为node_zonelists 数组,具有MAX_ZONELISTS个元素,每个元素都是一个指向zonelist结构的指针。
那好,我们接下来看到 这个指针用. 运算符访问了 zonelist 结构的 _zonerefs 元素,并将这个访问结果赋值给了zonerefs 变量。用上面同样的方法分析zonerefs 变量的含义可得如下结论:
zonerefs 的变量值是一个数组。更详细的来说,这个变量值为指向的是一个名为_zonerefs的数组 的首地址。(数组省略[],退化为指针,表示首地址。)
好,这个时候需要有一个感性的认识,zonerefs 这个值是可以向上移动MAX_ZONES_PER_ZONELIST + 1 个单位,而不会产生指针越界的。(不理解就是C基础不扎实了,再补)
我们停下来,不看代码,来思考这里的逻辑。
我们感性认知的这些数组是用来做什么的? 思考以下,MAX_ZONE_PER_ZONELIST = MAX_NUMNODES x MAX_NZ_ZONE; 就是所有的结点数乘上所有ZONE的数量。就是这个系统中所有ZONE的个数。OK。这时候已经为我们的目的做好了准备,房子已经搭好了,让他们住进来吧。
这个时候 build_zonerefs_node 这个函数出场了。


static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
{struct zone *zone;enum zone_type zone_type = MAX_NR_ZONES;int nr_zones = 0;do {zone_type--;zone = pgdat->node_zones + zone_type;if (populated_zone(zone)) {zoneref_set_zone(zone, &zonerefs[nr_zones++]);check_highest_zone(zone_type);}} while (zone_type);return nr_zones;
}

很简单的一个循环结构。重要的里面的逻辑情况。传入的实参是node的描述结构pgdat, 我们的房子 zonerefs 数组。
准备知识如下:MAX_NR_ZONES 就是告诉linux,我要遍历所有的zone_type(by the way, only three: dma/dma32, normal, high)。开始吧。从zone_type 最高开始(zone_type=3),到1停止(表明便利到DMA区域了),找到传入的pgdat(传入的这个node结点对应的node_zone地址) 并加上zone_type个单位长度(即将这个指针向上走zone_type个,说了把zoen_type当成int吧),依次得到 high, normal, dma/dma32的实际地址,并赋值 给zone。下面的判断语句就是把这个找到的zone 赋值给zoneref,看名字就能看出来 zoneref_set_zone, 多简洁。实际的操作更是简洁。(容我在此对linux 的开发者致以最强敬意,这个方法我在阅读的时候是没想到的。)

static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{zoneref->zone = zone;zoneref->zone_idx = zone_idx(zone);
}

此时,我们站在单个node的角度来看,当有“天下英雄尽入吾彀中矣” 的感慨。
至此,结束。
至于其他的一些细节,如加入备选列表的zone必须是有意义的,即其present_pages 必须不为0; build_zonelists 的第一段是将 zonerefs 指向自己zone中的 优先级较低的区域,并移动zonerefs指针接受其他node 的情况,自己看看就理解了。还有像下面 从local_node 开始添加,到头后再折回从0开始、zonerefs的最后一位指向空指针;这些都是比较简单的。只罗列,不再赘述。

参考文献:
深入Linux内核架构-Wolfgang 牛逼。

这篇关于Initialization of Node and Zone(linux 内存 结点内存区域的初始化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769480

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语