381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)

2024-03-03 08:28

本文主要是介绍381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

381. 有线电视网络 - AcWing题库

给定一张 n 个点 m 条边的无向图,求最少去掉多少个点,可以使图不连通。

如果不管去掉多少个点,都无法使原图不连通,则直接返回 n。

输入格式

输入包含多组测试数据。

每组数据占一行,首先包含两个整数 n 和 m,接下来包含 m 对形如 (x,y) 的数对,形容点 x 与点 y 之间有一条边。

数对 (x,y) 中间不会包含空格,其余地方用一个空格隔开。

输出格式

每组数据输出一个结果,每个结果占一行。

数据范围

0≤n≤50

输入样例:
0 0
1 0
3 3 (0,1) (0,2) (1,2)
2 0
5 7 (0,1) (0,2) (1,3) (1,2) (1,4) (2,3) (3,4)
输出样例:
0
1
3
0
2

解析: 

通过删除某些点让无向图不连通。

如果是删除某些边使得无向图不连通,我们很容易想到使用最小割算法将割边删去。通过枚举源点 S 和汇点 T,然后使用最小割算法处理。

但本题要求将点删除,而非将边删除。我们需要将点转换成边看看是否能使用最小割算法。

拆点:

使用常见的拆点方式,将点拆成出点和入点,且出点和入点之间连一条边,边权为1,对应本题中要求求得点得数量。

简单割处理:  

由于本题只能删除点而不能删除边,所以我们要使得最小割算法不删除原图得边:将原图的边的容量设为正无穷。(最小割算法中的常用技巧,将不希望作为割边的边的容量设为正无穷) 

定义简单割:割边仅为有限容量的边形成的割称为简单割

 简单割具体证明参考:2325. 有向图破坏(二分图,最小点权覆盖,最小割,网络流)-CSDN博客 

证明简单割与要删掉的点的点割集存在一一对应的关系:

简单割=> 点割集
因为我们通过简单割求出的割边都是点内部的边,当我们把简单割里的边全删掉后,源点和汇点则不会联通了,这些构成“内部边”的点的集合就是点割集。

下面用反证法证明上面构造出来的点割集一定是符合题意的要删掉的点:

假设上面构造出来的点割集不符合题意,即把上面所有的点删掉,在原图里依然存在从源点到达汇点的路径,说明在原图中,存在一条不经过我们构造出来的点割集里的点的路径即不经过“点内部的边”,依然能从源点到达汇点,对应到流网络里则是存在一条从源点到汇点的不经过割边的路径,则说明源点与汇点在一个集合里,说明这不是一个割,与前提矛盾。因此反证得证。

点割集=> 简单割
这里的点割集指的是“极小点割集”

构造简单割的方法:

从源点开始dfs一遍,若经过点割集里的点,则停下不往前搜,若不是则往前搜,每次把搜到的点打个标记,这样标记了的点就是S集合,没有标记的点就是T集合,构成一个简单割C[S,T]因此我们可以证出简单割与割点集存在一一对应的关系。

考虑数量关系
由于我们建边的时候把入点到出点的边的容量设为1,则得到的简单割的割边和就是选到的点的数量,则可以得到:割点集的点的数量 = 简单割的割的容量和 ,因此:最小割点集 = 最小割

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 1e2 + 10, M = (2500+50) * 2 + 10, INF = 0x3f3f3f3f;
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];void add(int a, int b, int c) {e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}bool bfs() {int hh = 0, tt = 0;memset(d, -1, sizeof d);q[0] = S, d[S] = 0, cur[S] = h[S];while (hh <= tt) {int t = q[hh++];for (int i = h[t]; i != -1; i = ne[i]) {int j = e[i];if (d[j] == -1 && f[i]) {d[j] = d[t] + 1;cur[j] = h[j];if (j == T)return 1;q[++tt] = j;}}}return 0;
}int find(int u, int limit) {if (u == T)return limit;int flow = 0;for (int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {int j = e[i];cur[u] = i;if (d[j] == d[u] + 1 && f[i]) {int t = find(j, min(f[i], limit - flow));if (!t)d[j] = -1;f[i] -= t, f[i ^ 1] += t, flow += t;}}return flow;
}int dinic() {int ret = 0, flow;while (bfs())while (flow = find(S, INF))ret += flow;return ret;
}int main() {while (cin >> n >> m) {memset(h, -1, sizeof h);idx = 0;for (int i = 0; i < n; i++) {add(i, i + n, 1);}for (int i = 1,a,b; i <= m; i++) {scanf(" (%d,%d)", &a, &b);add(n + a, b, INF);add(n + b, a, INF);}int ans = n;for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {S = n + i, T = j;for (int k = 0; k < idx; k += 2) {f[k] += f[k ^ 1];f[k ^ 1] = 0;}ans = min(ans, dinic());}}cout << ans << endl;}return 0;
}

这篇关于381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769051

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja