381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)

2024-03-03 08:28

本文主要是介绍381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

381. 有线电视网络 - AcWing题库

给定一张 n 个点 m 条边的无向图,求最少去掉多少个点,可以使图不连通。

如果不管去掉多少个点,都无法使原图不连通,则直接返回 n。

输入格式

输入包含多组测试数据。

每组数据占一行,首先包含两个整数 n 和 m,接下来包含 m 对形如 (x,y) 的数对,形容点 x 与点 y 之间有一条边。

数对 (x,y) 中间不会包含空格,其余地方用一个空格隔开。

输出格式

每组数据输出一个结果,每个结果占一行。

数据范围

0≤n≤50

输入样例:
0 0
1 0
3 3 (0,1) (0,2) (1,2)
2 0
5 7 (0,1) (0,2) (1,3) (1,2) (1,4) (2,3) (3,4)
输出样例:
0
1
3
0
2

解析: 

通过删除某些点让无向图不连通。

如果是删除某些边使得无向图不连通,我们很容易想到使用最小割算法将割边删去。通过枚举源点 S 和汇点 T,然后使用最小割算法处理。

但本题要求将点删除,而非将边删除。我们需要将点转换成边看看是否能使用最小割算法。

拆点:

使用常见的拆点方式,将点拆成出点和入点,且出点和入点之间连一条边,边权为1,对应本题中要求求得点得数量。

简单割处理:  

由于本题只能删除点而不能删除边,所以我们要使得最小割算法不删除原图得边:将原图的边的容量设为正无穷。(最小割算法中的常用技巧,将不希望作为割边的边的容量设为正无穷) 

定义简单割:割边仅为有限容量的边形成的割称为简单割

 简单割具体证明参考:2325. 有向图破坏(二分图,最小点权覆盖,最小割,网络流)-CSDN博客 

证明简单割与要删掉的点的点割集存在一一对应的关系:

简单割=> 点割集
因为我们通过简单割求出的割边都是点内部的边,当我们把简单割里的边全删掉后,源点和汇点则不会联通了,这些构成“内部边”的点的集合就是点割集。

下面用反证法证明上面构造出来的点割集一定是符合题意的要删掉的点:

假设上面构造出来的点割集不符合题意,即把上面所有的点删掉,在原图里依然存在从源点到达汇点的路径,说明在原图中,存在一条不经过我们构造出来的点割集里的点的路径即不经过“点内部的边”,依然能从源点到达汇点,对应到流网络里则是存在一条从源点到汇点的不经过割边的路径,则说明源点与汇点在一个集合里,说明这不是一个割,与前提矛盾。因此反证得证。

点割集=> 简单割
这里的点割集指的是“极小点割集”

构造简单割的方法:

从源点开始dfs一遍,若经过点割集里的点,则停下不往前搜,若不是则往前搜,每次把搜到的点打个标记,这样标记了的点就是S集合,没有标记的点就是T集合,构成一个简单割C[S,T]因此我们可以证出简单割与割点集存在一一对应的关系。

考虑数量关系
由于我们建边的时候把入点到出点的边的容量设为1,则得到的简单割的割边和就是选到的点的数量,则可以得到:割点集的点的数量 = 简单割的割的容量和 ,因此:最小割点集 = 最小割

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 1e2 + 10, M = (2500+50) * 2 + 10, INF = 0x3f3f3f3f;
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];void add(int a, int b, int c) {e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}bool bfs() {int hh = 0, tt = 0;memset(d, -1, sizeof d);q[0] = S, d[S] = 0, cur[S] = h[S];while (hh <= tt) {int t = q[hh++];for (int i = h[t]; i != -1; i = ne[i]) {int j = e[i];if (d[j] == -1 && f[i]) {d[j] = d[t] + 1;cur[j] = h[j];if (j == T)return 1;q[++tt] = j;}}}return 0;
}int find(int u, int limit) {if (u == T)return limit;int flow = 0;for (int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {int j = e[i];cur[u] = i;if (d[j] == d[u] + 1 && f[i]) {int t = find(j, min(f[i], limit - flow));if (!t)d[j] = -1;f[i] -= t, f[i ^ 1] += t, flow += t;}}return flow;
}int dinic() {int ret = 0, flow;while (bfs())while (flow = find(S, INF))ret += flow;return ret;
}int main() {while (cin >> n >> m) {memset(h, -1, sizeof h);idx = 0;for (int i = 0; i < n; i++) {add(i, i + n, 1);}for (int i = 1,a,b; i <= m; i++) {scanf(" (%d,%d)", &a, &b);add(n + a, b, INF);add(n + b, a, INF);}int ans = n;for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {S = n + i, T = j;for (int k = 0; k < idx; k += 2) {f[k] += f[k ^ 1];f[k ^ 1] = 0;}ans = min(ans, dinic());}}cout << ans << endl;}return 0;
}

这篇关于381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769051

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO