Vins-Moon配准运行

2024-03-03 06:04
文章标签 运行 配准 vins moon

本文主要是介绍Vins-Moon配准运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Vins-Moon运行

  • 源码地址
  • 电脑配置
  • 环境配置
  • 编译
  • 适配Kitti数据集
  • 运行结果
    • Euroc数据集
    • kitti数据集
  • evo评估(KITTI数据)
    • 输出轨迹(tum格式)
    • 结果

源码地址

源码链接:https://github.com/HKUST-Aerial-Robotics/VINS-Mono.git

电脑配置

Ubuntu 18.04 + ROS Melodic + GTSAM 4.0.2 + CERES 1.14.0
pcl1.8+vtk8.2.0+opencv3.2.0

环境配置

之前已经配置过LVI-SAM的环境,所以没有什么额外需要配置的(可参考之前的博客)

编译

 cd ~/catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Mono.gitcd ..catkin_make -j2

注:直接catkin_make会死机

适配Kitti数据集

在config文件夹下新建kitti文件夹
新建kitti_config.yaml文件
(具体参数设置的方式,可以参考之前LVI-SAM博客)

%YAML:1.0#common parameters
imu_topic: "/imu_raw"   #"/kitti/oxts/imu"
image_topic: "/kitti/camera_gray_left/image_raw"
output_path: "/home/nssc/sbk/outputs/map/vinsmoon/"#camera calibration 
model_type: PINHOLE
camera_name: camera
#10_03
# image_width: 1241
# image_height: 376
# 09_30
image_width: 1226
image_height: 370
distortion_parameters:k1: 0.0k2: 0.0p1: 0.0p2: 0.0
projection_parameters:
# 10_03
#   fx: 7.188560e+02
#   fy: 7.188560e+02
#   cx: 6.071928e+02
#   cy: 1.852157e+02# 09_30fx: 7.070912e+02fy: 7.070912e+02cx: 6.018873e+02cy: 1.831104e+02# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.# 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.# 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrixrows: 3cols: 3dt: d#  10_03# data: [0.00875116, -0.00479609,  0.99995027, -0.99986428, -0.01400249,  0.00868325, 0.01396015, -0.99989044, -0.00491798]#  09_30data: [0.00781298, -0.0042792,  0.99996033,-0.99985947, -0.01486805,  0.00774856, 0.0148343 , -0.99988023, -0.00439476]     #Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrixrows: 3cols: 1dt: d#  10_03# data: [1.10224312,-0.31907194,  0.74606588]
#09_30 data: [1.14389871,-0.31271847,  0.72654605]#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.08          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 0.004         # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 0.00004         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-6       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.81007     # gravity magnitude#loop closure parameters
loop_closure: 1                    # start loop closure
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
fast_relocalization: 0             # useful in real-time and large project
pose_graph_save_path: "/home/nssc/sbk/outputs/map/vinsmoon/pose_graph/" # save and load path#unsynchronization parameters
estimate_td: 0                      # online estimate time offset between camera and imu
td: 0.0                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0               # unit: s. rolling shutter read out time per frame (from data sheet). #visualization parameters
save_image: 1                   # save image in pose graph for visualization prupose; you can close this function by setting 0 
visualize_imu_forward: 0        # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4      # size of camera marker in RVIZ

在vins_estimator/launch/文件夹下新建文件kitti.launch
(主要修改一下config_path的路径)

<launch><arg name="config_path" default = "$(find feature_tracker)/../config/kitti/kitti_config.yaml" /><arg name="vins_path" default = "$(find feature_tracker)/../config/../" /><node name="feature_tracker" pkg="feature_tracker" type="feature_tracker" output="log"><param name="config_file" type="string" value="$(arg config_path)" /><param name="vins_folder" type="string" value="$(arg vins_path)" /></node><node name="vins_estimator" pkg="vins_estimator" type="vins_estimator" output="screen"><param name="config_file" type="string" value="$(arg config_path)" /><param name="vins_folder" type="string" value="$(arg vins_path)" /></node><node name="pose_graph" pkg="pose_graph" type="pose_graph" output="screen"><param name="config_file" type="string" value="$(arg config_path)" /><param name="visualization_shift_x" type="int" value="0" /><param name="visualization_shift_y" type="int" value="0" /><param name="skip_cnt" type="int" value="0" /><param name="skip_dis" type="double" value="0" /></node></launch>

运行结果

Euroc数据集

 roslaunch vins_estimator euroc.launch roslaunch vins_estimator vins_rviz.launchrosbag play YOUR_PATH_TO_DATASET/MH_01_easy.bag 

在这里插入图片描述同时看到groundtrue:

roslaunch benchmark_publisher publish.launch sequence_name:=MH_01_easy

在这里插入图片描述

kitti数据集

有关kitti数据集生成bag包的方式,可参考之前生成LVI-SAM适配数据的博客

 roslaunch vins_estimator kitti.launch roslaunch vins_estimator vins_rviz.launchrosbag play YOUR_PATH_TO_DATASET/ rosbag play kitti_2011_09_30_drive_0027_synced.bag

在这里插入图片描述

evo评估(KITTI数据)

输出轨迹(tum格式)

vins_estimator/src/utility/visualization.cpp
pubOdometry()函数150+行

        // write result to file// ofstream foutC(VINS_RESULT_PATH, ios::app);// foutC.setf(ios::fixed, ios::floatfield);// foutC.precision(0);// foutC << header.stamp.toSec() * 1e9 << ",";// foutC.precision(5);// foutC << estimator.Ps[WINDOW_SIZE].x() << ","//       << estimator.Ps[WINDOW_SIZE].y() << ","//       << estimator.Ps[WINDOW_SIZE].z() << ","//       << tmp_Q.w() << ","//       << tmp_Q.x() << ","//       << tmp_Q.y() << ","//       << tmp_Q.z() << ","//       << estimator.Vs[WINDOW_SIZE].x() << ","//       << estimator.Vs[WINDOW_SIZE].y() << ","//       << estimator.Vs[WINDOW_SIZE].z() << "," << endl;ofstream foutC(VINS_RESULT_PATH, ios::app);foutC.setf(ios::fixed, ios::floatfield);foutC.precision(9);foutC << header.stamp.toSec() << " ";foutC.precision(5);foutC << estimator.Ps[WINDOW_SIZE].x() << " "<< estimator.Ps[WINDOW_SIZE].y() << " "<< estimator.Ps[WINDOW_SIZE].z() << " "<< tmp_Q.x() << " "<< tmp_Q.y() << " "<< tmp_Q.z() << " "<< tmp_Q.w() << endl;foutC.close();

pose_graph/src/pose_graph.cpp
addKeyFrame()函数150+行

    if (SAVE_LOOP_PATH){// ofstream loop_path_file(VINS_RESULT_PATH, ios::app);// loop_path_file.setf(ios::fixed, ios::floatfield);// loop_path_file.precision(0);// loop_path_file << cur_kf->time_stamp * 1e9 << ",";// loop_path_file.precision(5);// loop_path_file  << P.x() << ","//       << P.y() << ","//       << P.z() << ","//       << Q.w() << ","//       << Q.x() << ","//       << Q.y() << ","//       << Q.z() << ","//      << endl;ofstream loop_path_file(VINS_RESULT_PATH, ios::app);loop_path_file.setf(ios::fixed, ios::floatfield);loop_path_file.precision(0);loop_path_file << cur_kf->time_stamp << " ";loop_path_file.precision(5);loop_path_file  << P.x() << " "<< P.y() << " "<< P.z() << " "<< Q.x() << " "<< Q.y() << " "<< Q.z() << " "<< Q.w() << endl;    loop_path_file.close();}

updatePath()函数600+行

        if (SAVE_LOOP_PATH){// ofstream loop_path_file(VINS_RESULT_PATH, ios::app);// loop_path_file.setf(ios::fixed, ios::floatfield);// loop_path_file.precision(0);// loop_path_file << (*it)->time_stamp * 1e9 << ",";// loop_path_file.precision(5);// loop_path_file  << P.x() << ","//       << P.y() << ","//       << P.z() << ","//       << Q.w() << ","//       << Q.x() << ","//       << Q.y() << ","//       << Q.z() << ","//       << endl;ofstream loop_path_file(VINS_RESULT_PATH, ios::app);loop_path_file.setf(ios::fixed, ios::floatfield);loop_path_file.precision(0);loop_path_file << (*it)->time_stamp << " ";loop_path_file.precision(5);loop_path_file  << P.x() << " "<< P.y() << " "<< P.z() << " "<< Q.x() << " "<< Q.y() << " "<< Q.z() << " "<< Q.w() << endl;loop_path_file.close();}

pose_graph_node.cpp中的main()函数

       # VINS_RESULT_PATH = VINS_RESULT_PATH + "/vins_result_loop.csv";VINS_RESULT_PATH = VINS_RESULT_PATH + "/vins_result_loop.txt";

对输出的vins_result_loop.txt文件修改时间戳

# 读取txt文件
with open('vins_result_loop.txt', 'r') as file:lines = file.readlines()# 处理数据
first_line = lines[0].strip().split()
first_num = int(first_line[0])
output_lines = []
for line in lines[0:]:parts = line.split()new_num = float(parts[0]) - first_numnew_line = str(new_num)  +' '+ ' '.join(parts[1:]) + '\n'output_lines.append(new_line)# 写入txt文件
with open('output.txt', 'w') as file:for line in output_lines:file.write(''.join(line))

结果

evo_traj tum output.txt 07_gt_tum.txt --ref=07_gt_tum.txt -a -p --plot_mode=xyz


在这里插入图片描述
在这里插入图片描述

参考链接:
https://blog.csdn.net/m0_49066914/article/details/131814856
https://blog.csdn.net/Hanghang_/article/details/104535370

这篇关于Vins-Moon配准运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768681

相关文章

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

PostgreSQL如何用psql运行SQL文件

《PostgreSQL如何用psql运行SQL文件》文章介绍了两种运行预写好的SQL文件的方式:首先连接数据库后执行,或者直接通过psql命令执行,需要注意的是,文件路径在Linux系统中应使用斜杠/... 目录PostgreSQ编程L用psql运行SQL文件方式一方式二总结PostgreSQL用psql运

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

如何在运行时修改serialVersionUID

优质博文:IT-BLOG-CN 问题 我正在使用第三方库连接到外部系统,一切运行正常,但突然出现序列化错误 java.io.InvalidClassException: com.essbase.api.base.EssException; local class incompatible: stream classdesc serialVersionUID = 90314637791991

win7+ii7+tomcat7运行javaWeb开发的程序

转载请注明出处:陈科肇 1.前提准备: 操作系统:windows 7 旗舰版   x64 JDK:jdk1.7.0_79_x64(安装目录:D:\JAVA\jdk1.7.0_79_x64) tomcat:32-bit64-bit Windows Service Installer(安装目录:D:\0tomcat7SerV) tomcat-connectors:tomcat-connect

php 7之PhpStorm + Nginx + Xdebug运行调试

操作环境: windows PHP 7.1.10 PhpStorm-2017.2.4 Xdebug 2.5.4 Xdebug helper 1.6.1 nginx-1.12.2 注意查看端口占用情况 netstat -ano //查看所以端口netstat -aon|findstr "80" //查看指定端口占用情况 比如80端口查询情况 TCP 0.0.0.0:8

[轻笔记] ubuntu Shell脚本实现监视指定进程的运行状态,并能在程序崩溃后重启动该程序

根据网上博客实现,发现只能监测进程离线,然后对其进行重启;然而,脚本无法打印程序正常状态的信息。自己通过不断修改测试,发现问题主要在重启程序的命令上(需要让重启的程序在后台运行,不然会影响监视脚本进程,使其无法正常工作)。具体程序如下: #!/bin/bashwhile [ 1 ] ; dosleep 3if [ $(ps -ef|grep exe_name|grep -v grep|

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib