AutoEncoder和 Denoising AutoEncoder学习笔记

2024-03-02 16:28

本文主要是介绍AutoEncoder和 Denoising AutoEncoder学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:
【1】 https://lilianweng.github.io/posts/2018-08-12-vae/

写在前面:
只是直觉上的认识,并没有数学推导。后面会写一篇(抄)大一统文章(概率角度理解为什么AE要选择MSE Loss)

TOC

  • 1 AutoEncoder
  • 2 Denoising AutoEncoder

1 AutoEncoder

在这里插入图片描述
AE实际上是一个压缩模型,它通过将输入 x x x传进encoder将图像压缩到隐式特征(latant representation),然后再通过decoder输出 x ′ x' x,试图重建出 x x x。既重建公式为该两个变量的均方差损失:
L = ∣ ∣ x − x ′ ∣ ∣ 2 = 1 N ∑ i = 1 N ( x i − x ′ i ) 2 L=||x-x'||^2=\frac{1}{N}\sum_{i=1}^N(x^i -x'^i)^2 L=∣∣xx2=N1i=1N(xixi)2

如果成功训练好一个AE,那么encoder就可以说能正确提取出输入 x x x的重要特征,而decoder也可以根据这些重要特征还原出与输入 x x x相近的 x ′ x' x

但AE仅仅是在学习等式函数 x = x ′ x=x' x=x,所以很容易就过拟合了(神经网络有强大的拟合函数的能力),过拟合之后那么其仅对训练集数据表现很好,对未知数据的表现就一塌糊涂了。

2 Denoising AutoEncoder

在这里插入图片描述
DAE相当于该模型上了强度,与其给你看完整的东西,不如我遮盖一部分,让你猜这部分是什么,然后将这个东西还原出来(人类视觉方面,如果遮盖了某个东西的一部分,大概率我们还是能想象出来的)

输入到encoder的数据就由 x x x,变为 x ~ i ∼ M D ( x ~ i ∣ x i ) \tilde x^i \sim M_D(\tilde x^i|x^i) x~iMD(x~ixi),其中 x ~ \tilde x x~表示被破坏的,或者被噪声污染过后的 x x x M D M_D MD表示噪声的随即映射分布,或者被随机破坏(置0)的每个像素上的概率。总之就是这么一回事。

我们可以理解为,当一部分像素被破坏之后,对于图像这种高维输入且高度冗余的数据,模型就要根据其他的维度去预测损失的维度的数据,就不再是去过拟合一个维度,这就构建了一个很好的学习到鲁棒隐式特征的基础。
【一个不恰当的例子:比如看到1、2、3,AE就记住了1、2、3的特征,那么给数据1、3、4,那么它可能就还原不出4。但是看到1、2、_,GT为1、2、3,那么模型可能就会根据1、2去推理出3(比如1+2=3),那么给出数据1、3、4,对于4,模型也有能力根据1、3去推出,学习到了某些加法操作的特征】

这篇关于AutoEncoder和 Denoising AutoEncoder学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766743

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个