【论文笔记】An Effective Adversarial Attack on Person Re-Identification ...

本文主要是介绍【论文笔记】An Effective Adversarial Attack on Person Re-Identification ...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文标题(文章标题处有字数限制):
《An Effective Adversarial Attack on Person Re-Identification in Video Surveillance via Dispersion Reduction》

Abstract

通过减少神经网络内部特征图的分散性攻击reid模型。

erbloo/Dispersion_reduction (github.com)

1 Introduction

采用“分散减少”(Dispersion Reduction)的攻击方法,通过内部特征图的对比度来实现的黑盒攻击。

3 Proposed Approach

3.1 Notation

x r e a l x^{real} xreal表示原始查询图像, f ( ⋅ ) f(\cdot) f()表示深度神经网络分类器,第 k k k层的输出特征图为 F \mathfrak{F} F,其中第一次迭代时 F = f ( x r e a l ) ∣ k \mathfrak{F}=f(x^{real})|_k F=f(xreal)k。对于后面的每一次迭代,计算色散(用 g ( ⋅ ) g(\cdot) g()表示),色散的梯度为 ∇ x r e a l g ( F k ) \nabla_{x^{real}} g(\mathfrak{F}_k) xrealg(Fk),用来更新对抗样本 x a d v x^{adv} xadv

3.2 Dispersion Reduction

将Person ReID模型视为黑匣子进行处理和攻击需要一种可高度转移且能够有效攻击不同训练数据集和模型架构的方法。
大多数现有的攻击方法依赖于特定的任务的损失函数,这极大限制了它们跨任务和不同网络模型的可转移性。

分散减少(DR)具有良好的可转移性,在跨任务攻击场景中取得了成功。DR采用公开可用的分类网络作为代理源模型,并攻击用于不同计算机视觉任务的模型,例如对象检测,语义分割和云API应用程序。

DR是黑盒攻击。

传统的黑盒攻击建立一个源模型作为代理,其输入与目标模型生成的标签,而不是真实标签,让源模型来模仿目标行为。

本文提出的DR攻击不依赖于标签系统或特定的任务损失函数,仅访问模型的顶部。
需要源模型,但是不需要按照目标模型进行训练。
DR攻击具有很强的可转移性,预训练的公共模型可以简单地充当源模型。
![[Pasted image 20240301153300.png]]

图1:DR攻击减少了内部特征图的分散性。该对抗性样本是通过攻击VGG16模型的conv3.3层(减少分散性)生成的。与原始图像特征图相比,这也会导致后续层的特征图失真。

还可以分析攻击VGG16网络时针对不同的卷积层的攻击效果。

![[Pasted image 20240301153542.png]]

图2:攻击VGG16不同的层时的效果。攻击中间的层会导致掉点更明显。中间层的标准差的下降也远大于顶层和底层。

DR攻击可以用下面的优化问题定义:
min ⁡ x g ( f ( x a d v , θ ) ) s . t . ∣ ∣ x a d v − x r e a l ∣ ∣ ∞ ≤ ϵ (6) \begin{aligned} \min_x g(f(x^{adv},\theta)) \\ s.t. ||x^{adv}-x^{real}||_\infty\leq\epsilon\tag{6} \end{aligned} xming(f(xadv,θ))s.t.∣∣xadvxrealϵ(6)
其中 f ( ⋅ ) f(\cdot) f()是深度神经网络的分类器, θ \theta θ表示网络参数, g ( ⋅ ) g(\cdot) g()计算分散度。

提出的DR通过采取迭代步骤,通过减少 k k k层中间的特征图的分散度来创建对抗性示例。

离散度描述了分布被拉伸或压缩的程度,并且可以有不同的离散度度量,如方差、标准差、基尼系数。

简单起见使用标准差作为分散度度量。

给定任何特征图,DR沿着降低标准差的方向,迭代地向 x r e a l x^{real} xreal添加噪声,通过裁剪为 x ± ϵ x±\epsilon x±ϵ,将其映射到 x r e a l x^{real} xreal附近。令第 k k k层的特征图为 F = f ( x t a d v ) ∣ k \mathfrak{F}=f(x_t^{adv})|_k F=f(xtadv)k,DR攻击遵循下列等式:
x t + 1 a d v = x t a d v − ∇ x a d v g ( F k ) = x t a d v − d g ( t ) d t ⋅ d f ( x t a d v ∣ k ) d x a d v (7) \begin{aligned} x_{t+1}^{adv}&=x_t^{adv}-\nabla_{x^{adv}}g(\mathfrak{F}_k)\\ &=x_t^{adv}-\frac{dg(t)}{dt}\cdot\frac{df(x_t^{adv}|_k)}{dx^{adv}}\tag{7} \end{aligned} xt+1adv=xtadvxadvg(Fk)=xtadvdtdg(t)dxadvdf(xtadvk)(7)

算法1:Dispersion Reduction Attack

输入:分类器 f f f,真实图像 x r e a l x^{real} xreal,第 k k k层的特征图,扰动 ϵ \epsilon ϵ,迭代次数 T T T,学习率 l l l
输出:对抗性样本 x a d v x^{adv} xadv,使得 ∣ ∣ x a d v − x r e a l ∣ ∣ ∞ ≤ ϵ ||x^{adv}-x^{real}||_\infty\leq\epsilon ∣∣xadvxrealϵ

  • x 0 a d v ← x r e a l x_0^{adv}\leftarrow x_{real} x0advxreal
  • 对于每次迭代:
    • F k = f ( x t a d v ) ∣ k \mathfrak{F}_k=f(x_t^{adv})|_k Fk=f(xtadv)k
    • 计算标准差 g ( F k ) g(\mathfrak{F}_k) g(Fk)
    • 计算梯度 ∇ x r e a l g ( F k ) \nabla_{x^{real}} g(\mathfrak{F}_k) xrealg(Fk)
    • 更新 x a d v x^{adv} xadv x t a d v = x t a d v − Adam ( ∇ x r e a l g ( F k ) , l ) x_t^{adv}=x_t^{adv}-\text{Adam}(\nabla_{x^{real}} g(\mathfrak{F}_k), l) xtadv=xtadvAdam(xrealg(Fk),l)
    • x t a d v x_t^{adv} xtadv移动到 x r e a l x^{real} xreal附近: x t + 1 a d v = clip ( x t a d v , x r e a l − ϵ , x r e a l + ϵ ) x_{t+1}^{adv}=\text{clip}(x_t^{adv},x^{real}-\epsilon,x^{real}+\epsilon) xt+1adv=clip(xtadv,xrealϵ,xreal+ϵ)
  • 返回 x t + 1 a d v x_{t+1}^{adv} xt+1adv

3.3 Victim ReID Models and Implementation Details of Attacks

[68]layumi. Dg-Net. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/NVlabs/DG-Net
[69] michuanhaohao. Alignedreid. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/michuanhaohao/AlignedReID
[70] AI-NERC-NUPT. Plr-Osnet. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/AI-NERC-NUPT/PLR-OSNet
训练时,图像被放缩至256x128,将小批量大小从16降至4,来减小GPU内存开销。

4 Experiments, Results and Discussion

使用了3个SOTA ReID模型作为受害模型,使用DR攻击,在4个数据集上进行攻击表现评估。
![[Pasted image 20240301200901.png]]
表1:受害模型在攻击前和攻击后的mAP,在不同的数据集上的表现。

这篇关于【论文笔记】An Effective Adversarial Attack on Person Re-Identification ...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764947

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi