线性规划在多种问题形式下的应用

2024-03-02 04:20

本文主要是介绍线性规划在多种问题形式下的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性规划的用处非常的广泛,这主要是因为很多类型的问题是可以通过转化的方式转化为线性规划的问题。例如需要再图论中寻找起始点到给定的点的最短路径问题:

添加图片注释,不超过 140 字(可选)

假设要计算从节点0到节点4的最短路径,用变量d1到d4来表示节点0到节点1,2,3,4的最短路径,那么解决这个问题的本质上是解决如下的一个线性规划系统:

添加图片注释,不超过 140 字(可选)

而这里要注意的是问题所需要求的是最短路径,按照目标函数应该是查找最小值才对,但是这里是查找的最大值,因为如果查找最小值,那么问题的答案就是将所有变量设置为0,而这就与所需要的目标是不相符的。

由于最短路径肯定大于0,同时最短路径一定能满足上面线性系统的约束条件,且最大化可以让我们找到一个非零解,因此它才能对应正确的最短路径。

在图论中还存在一种称为极大流的问题,如果给定一个有向图G,其中有一个起点和一个终点,在两者之间存在很多中间点,同时点与点之间的连接存在一个容量上限,问题是从起点开始发出多少流量,这些流量分流到各个支路后,最终汇合到终点,试问起点能够发出的流量最大是多少

添加图片注释,不超过 140 字(可选)

上图中相互连接的节点其路径上的数字表示能够通过该路径的最大流量,例如边sa的值就是3,因此从节点s流向节点a的流量最大不能超过3,如果用c(u,v)来表示两个连接节点间的最大容量,如c(s,a)=3,那么就有c(u,v)>0,同时用f(u,v)表示从s点出发的最大流量经过每一条管道时的流量,那么就可以制定出对应的线性规划系统如下:

添加图片注释,不超过 140 字(可选)

这里的E表示所有边的集合,所以有很多类型的问题是可以通过转化成为线性规划问题的。

这篇关于线性规划在多种问题形式下的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/764894

相关文章

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu