C++/WinRT教程(第四篇)WinRT 的错误和异常处理

2024-03-02 02:04

本文主要是介绍C++/WinRT教程(第四篇)WinRT 的错误和异常处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

避免捕获和抛出异常

捕获异常

抛出异常

编辑API时抛出异常

使用 noexcept 时如何调试

调用同步代码

快速失败

断言


前言

本文主要介绍 C++/WinRT 中的异常如何使用以及使用原则,如果你刚开始接触WinRT,建议先阅读第一篇。

C++/WinRT教程(第一篇)-CSDN博客

C++/WinRT教程(第二篇)基础类型的使用-CSDN博客

C++/WinRT教程(第三篇)API的使用-CSDN博客

其他资料:

现代 C++ 处理异常和错误的最佳做法 | Microsoft Learn

操作说明:异常安全性设计 | Microsoft Learn

避免捕获和抛出异常

最好尽量避免捕获和抛出异常。 如果没有异常处理程序,Windows 将自动生成错误报告(包括故障的小型转储),以便跟踪问题所在位置。

应仅在发生意外运行时错误时抛出异常,并处理带有错误/结果代码的任何其他事项,直接并靠近故障原因。 这样,当异常“被”引发时,你会知道原因是代码中的 bug 还是系统中的异常错误状态。

例如访问 Windows 注册表的场景。 如果你的应用无法从注册表读取值,这是预料之中的,你应该正确处理。 不要抛出异常;而应返回 bool 或 enum 值指示未读取值或原因。 另一方面,无法向注册表写入值很可能表示你的应用程序中存在的问题更大

抛出异常异常往往会比使用错误代码更慢。谷歌和微软代码规范都不提倡使用异常。

捕获异常

在 Windows 运行时 ABI 层出现的错误状态以 HRESULT 值的形式返回。 不过你无需处理代码中的 HRESULT。 为每个使用方的 API 生成的 C++/WinRT 投影代码将检测 ABI 层的错误 HRESULT 代码,并将代码转换为你可以捕获并处理的 winrt::hresult_error 异常。 如果你的确希望处理 HRESULTS,那么请使用“winrt::hresult”类型。

例如,如果用户碰巧,在你的应用程序迭代图片库时,从该集合中删除了图像,那么投影将抛出异常。 这是你必须捕获和处理该异常的一种情况。 下面的代码示例展示了这种情况。

#include <winrt/Windows.Foundation.Collections.h>
#include <winrt/Windows.Storage.h>
#include <winrt/Windows.UI.Xaml.Media.Imaging.h>using namespace winrt;
using namespace Windows::Foundation;
using namespace Windows::Storage;
using namespace Windows::UI::Xaml::Media::Imaging;IAsyncAction MakeThumbnailsAsync()
{auto imageFiles{ co_await KnownFolders::PicturesLibrary().GetFilesAsync() };for (StorageFile const& imageFile : imageFiles){BitmapImage bitmapImage;try{auto thumbnail{ co_await imageFile.GetThumbnailAsync(FileProperties::ThumbnailMode::PicturesView) };if (thumbnail) bitmapImage.SetSource(thumbnail);}catch (winrt::hresult_error const& ex){winrt::hresult hr = ex.code(); // HRESULT_FROM_WIN32(ERROR_FILE_NOT_FOUND).winrt::hstring message = ex.message(); // The system cannot find the file specified.}}
}

请在调用 co_await 的函数时在协调程序中使用相同模式。 此 HRESULT 到异常转换的另一个示例是,当组件 API 返回 E_OUTOFMEMORY 时,会导致抛出“std::bad_alloc”。

如果只是要浏览 HRESULT 代码,则首选 winrt::hresult_error::code。 另一方面,winrt::hresult_error::to_abi 函数转换为 COM 错误对象,并将状态推送到 COM 线程本地存储。

抛出异常

注:慎重,没捕获成功你的程序会原地崩溃

下方代码示例使用 winrt::handle 值作为从 CreateEvent 返回的 HANDLE 的包装 。 然后将该句柄(从其创建 bool 值)传递到 winrt::check_bool 函数模板。

 “winrt::check_bool”使用 bool 或任何可转换为 false(错误条件)或 true(成功条件)的值。

winrt::handle h{ ::CreateEvent(nullptr, false, false, nullptr) };
winrt::check_bool(bool{ h });
winrt::check_bool(::SetEvent(h.get()));

如果你传递到 winrt::check_bool 的值为 false,那么以下操作序列将生效。

  • “winrt::check_bool”调用 winrt::throw_last_error 函数 。
  • “winrt::throw_last_error”调用 GetLastError 来检索调用线程的最后一个错误代码值,然后调用 winrt::throw_hresult 函数 。
  • “winrt::throw_hresult”使用表示该错误代码的 winrt::hresult_error 对象(或标准对象)抛出异常 。

由于 Windows API 使用各种返回值类型报告运行时的错误,因此除“winrt::check_bool”外,还有其他一些用于检查值和抛出异常的有用的帮助程序函数。

  • winrt::check_hresult。 检查 HRESULT 代码是否表示错误,如果是,则调用“winrt::throw_hresult”。
  • winrt::check_nt。 检查代码是否表示错误,如果是,则调用“winrt::throw_hresult”。
  • winrt::check_pointer。 检查指针是否为 null,如果是,则调用“winrt::throw_last_error”。
  • winrt::check_win32。 检查代码是否表示错误,如果是,则调用“winrt::throw_hresult”。

你可以对常见的返回代码类型使用这些帮助程序函数,也可以响应任何错误条件并调用 winrt::throw_last_error 或 winrt::throw_hresult 。

编辑API时抛出异常

所有 Windows 运行时应用程序二进制接口边界(简称 ABI 边界)必须为 noexcept,即不得有异常。 创作 API 时,应始终使用 C++ noexcept 关键字来标记 ABI 边界。 noexcept 在 C++ 中有特定的行为。 如果 C++ 异常遇到 noexcept 边界,则会调用 std::terminate,导致进程很快失败。

该行为通常是理想的做法,因为未经处理的异常几乎总是意味着进程中出现了未知状态。

由于异常不得跨过 ABI 边界,在实现中出现的错误条件以 HRESULT 错误代码的形式跨 ABI 层返回。 在使用 C++/WinRT 创作 API 时,将生成代码以供你将在实现中抛出的任何异常转换为 HRESULT。 Winrt::to_hresult 函数以与此类似的模式用于生成的代码。

HRESULT DoWork() noexcept
{try{// Shim through to your C++/WinRT implementation.return S_OK;}catch (...){return winrt::to_hresult(); // Convert any exception to an HRESULT.}
}

winrt::to_hresult 处理派生自 std::exception 和 winrt::hresult_error 及其派生类型的异常 。 在你的实现中,最好使用 winrt::hresult_error 或派生类型,以便你的 API 的使用者可以收到丰富的错误信息。 “std::exception”(映射到 E_FAIL)在你使用标准模板库时引发异常的情况下受支持。

注:如果捕获std::exception就捕获不到 winrt::hresult_error ,所以最好就使用winrt::to_hresult 

使用 noexcept 时如何调试

如前所述,如果 C++ 异常遇到 noexcept 边界,则会调用 std::terminate,导致进程很快失败。 这不适用于调试,因为 std::terminate 通常会失去引发的大部分或所有错误或异常上下文,尤其是在涉及协同程序的情况下。

因此,本部分处理的是 ABI 方法(已使用 noexcept 进行适当的批注)使用 co_await 来调用异步 C++/WinRT 投影代码的情况。

建议将对 C++/WinRT 项目代码的调用包装在 winrt::fire_and_forget 中。 这样做就可以在正确的位置将未经处理的异常正确记录为存放异常,大大提高可调试性。

HRESULT MyWinRTObject::MyABI_Method() noexcept
{winrt::com_ptr<Foo> foo{ get_a_foo() };[/*no captures*/](winrt::com_ptr<Foo> foo) -> winrt::fire_and_forget{co_await winrt::resume_background();foo->ABICall();AnotherMethodWithLotsOfProjectionCalls();}(foo);return S_OK;
}

winrt::fire_and_forget 有内置的 unhandled_exception 方法帮助程序,该程序调用 winrt::terminate,后者又调用 RoFailFastWithErrorContext。 这样就可以保证任何上下文(存放异常、错误代码、错误消息、堆栈回溯等)都会得到保存,不管是进行实时调试,还是进行事后转储。 为了方便起见,可以将“发后不理”部分重构成一个单独的可返回 winrt::fire_and_forget 的函数,然后调用它。

调用同步代码

在某些情况下,ABI 方法(同样已使用 noexcept 进行适当的批注)仅调用同步代码。 换而言之,它从不使用 co_await,不管是用来调用异步 Windows 运行时方法,还是用来在前台和后台线程之间切换。 在这种情况下,“ winrt::fire_and_forget”方法仍可使用,但效率不高。 可以改为执行类似下面的代码。 

HRESULT abi() noexcept try
{// ABI code goes here.
} catch (...) { winrt::terminate(); }

快速失败

上一部分的代码仍会快速失败。 从编写的内容来看,该代码不处理任何异常。 任何未经处理的异常都会导致程序终止。

但该形式是很好的,因为它确保了可调试性。 在罕见情况下,可能需要使用 try/catch,并处理某些异常。 但这应该很罕见,因为正如本主题所述,我们反对将异常作为一种流控制机制用于预期的条件。

记住,让未经处理的异常逃脱无包装的 noexcept 上下文是很糟糕的做法。 在该条件下,C++ 运行时会 std::terminate 进程,因此会失去任何存放的由 C++/WinRT 仔细记录的异常信息。

断言

对应用程序中的内部假设,存在断言。 最好尽可能地为编译时验证使用“static_assert”。

WinRT使用带布尔值表达式的 WINRT_ASSERTWINRT_ASSERT 是宏定义,并且扩展到 _ASSERTE。

WINRT_ASSERT(pos < size());

 WINRT_ASSERT 在发布版本中被编译; 在调试版本中,它会在断言所在的代码行上停止调试器中的应用程序。

 不应在析构函数中使用异常。 因此,至少在调试版本中,你可以断言从带有 WINRT_VERIFY(带有布尔值表达式)和 WINRT_VERIFY_(带有预期结果和布尔值表达式)的析构函数调用函数的结果。

WINRT_VERIFY(::CloseHandle(value));
WINRT_VERIFY_(TRUE, ::CloseHandle(value));

这篇关于C++/WinRT教程(第四篇)WinRT 的错误和异常处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764575

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)