zephyr学习

2024-03-01 23:36
文章标签 学习 zephyr

本文主要是介绍zephyr学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

zephyr内核对象学习

定时器

类似linux的定时器,
可以分别设置第一次到期时间和后续的周期触发时间,
可以注册到期回调和停止回调
还有一个计数状态,用于标记timer到期了多少次
在这里插入图片描述
duration:设定timer第一次到期的时间。

period: timer第一次到期后的触发时间间隔。

expiry:触发回调。

定时器的使用:

  1. 初始化定时器
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn);
  1. 启动定时器
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period);
  1. 停止定时器
void k_timer_stop(struct k_timer *timer);
  1. 读取定时器状态
uint32_t k_timer_status_get(struct k_timer *timer);

读取定时器的状态,该状态表示自上次读取其状态以来定时器已到期的次数,每次读取后会重置状态为0。

  1. 等待定时器到期
uint32_t k_timer_status_sync(struct k_timer *timer);

调用这个函数会阻塞线程,直到定时器到期或者停止,调用这个函数会将定时器状态清零,另外不允许在中断处理函数中调用该函数,函数返回定时器的状态值。

  1. 获取定时器超时到期时的系统时间
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);

该函数返回定时器下一次到期时候的系统时间,以系统ticks为单位。如果定时器未运行,则返回当前系统时间。

  1. 获取定时器超时到期的剩余时间
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)

计算运行的定时器下次过期前剩余的时间,如果定时器未运行,则返回0。

  1. 获取定时器超时到期前的剩余时间
uint32_t k_timer_remaining_get(struct k_timer *timer);

计算运行定时器下次到期前剩余的(近似)时间,以毫秒(ms)为单位。如果定时器未运行,则返回0。

另外还有一种定义和初始化定时器的方式:
静态定义并初始化定时器

#define K_TIMER_DEFINE(name, expiry_fn, stop_fn)
注意

因为timer的回调是在中断中执行,所以在回调函数中不能做耗时操作。
timer不能保证精确的定时,但其精度比k_sleep/k_usleep高,测量执行时间时不建议使用k_timer,建议读系统硬件时钟。

当timer触发回调后需要处理耗时操作时,可配合k_work使用,将耗时操作放在workqueue中执行

/* k_work回调函数,用于处理耗时操作 */
void work_handler(struct k_work *work)
{while(int i=0, i<100, i++){printk("do something \n");}
}/* 定义初始化一个k_work */
K_WORK_DEFINE(a_work, work_handler);/* timer到期回调函数 */
static void timer_handler_expiry(struct k_timer *dummy)
{counter++;printk("counter %d \n", counter);/*发送k_work信号量*/k_work_submit(&a_work);
}

信号量

信号量是用于控制多个线程对一组资源的访问,使用信号量在生产者和消费者之间同步

  • Zephyr的信号量在初始化时可以指定初始化计数值和最大计数值,生产者释放(give)信号量时计数值+1,但不会超过最大值,消费者获取(take)时计数值-1,直到为0。
  • 每次信号量释放时都会引发调度。
  • 如果多个线程都在等待信号量,新产生的信号量会被等待时间最长的最高优先级线程接收。

信号量的使用

  1. 初始化信号量
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit);
  1. 获取信号量
int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
  1. 释放信号量
void k_sem_give(struct k_sem *sem);

互斥量

互斥量本质应该和初始值和最大值为1的信号量相同;目的主要是为了提供对资源的独占访问(因为只有0和1,只有一个线程能拿到资源,所以就实现了独占访问)

  • 互斥量只能用于线程中,不能用于中断(会引起阻塞,所以不能用于中断)
  • 互斥量释放会引起调度(释放信号量也会引起调度)
  • 引起阻塞之后可能会导致优先级翻转(那理论上信号量也会引起优先级翻转)

互斥量的使用

  1. 初始化互斥量
int k_mutex_init(struct k_mutex *mutex);
  1. 互斥量上锁(相当于获取信号量)
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
  1. 互斥锁解锁(相当于释放信号量)
void k_mutex_unlock(struct k_mutex *mutex);

轮询(未详细研究)

轮询(poll)是一个比较特殊的内核对象,polling API 允许一个线程等待一个或者多个条件满足。支持的条件类型只能是内核对象,可以是Semaphore(信号量), FIFO(管道), poll signal(轮询)三种。
例如一个线程使用polling API同时等待多个semaphore,只要其中一个 semaphore 触发时 polling API 就会得到通知。
poll 具有以下特性:

  • 当一个线程等待多个触发条件时,只要有一个条件满足 k_poll 就会返回。
  • 当 Semaphore 或 FIFO 满足条件后, k_poll 只是接到通知返回,线程并未获取到 semaphore 或FIFO, 还需要使用代码主动获取。

轮询的使用

  1. 初始化轮询实例
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj);

初始化的时候,一次只能添加一个内存对象,event是数组指针,type是指后面obj的类型(信号量或者FIFO或者轮询信号,不论是这三个的哪一种,在这之前都要调用对应的初始化接口进行初始化),mode一般是notify_only

  1. 轮询接口
int k_poll (struct k_poll_event *events, int num_events, k_timeout_t timeout)

在一次释放之后,如果k_poll需要再次捕获该信号,需要先调用复位信号的接口进行复位,否则将无法再次释放;

如果用的是poll_signal,可以用下面的接口进行操作:

  1. 轮询信号初始化
void k_poll_signal_init(struct k_poll_signal *sig);
  1. 轮询信号释放
int k_poll_signal_raise(struct k_poll_signal *sig, int result);
  1. 复位轮询信号
void k_poll_signal_reset(struct k_poll_signal *sig);
  1. 检查轮询信号
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result);

个人理解,应该是在k_poll轮询多个对象其中包含poll_signal时,用来确定是不是signal被捕获到了;如果需要判断其他内核对象(信号量或者FIFO),则需要主动判断k_poll接口中的struct k_poll_event *events参数的state是sem有效还是fifo_data有效;

zephyr蓝牙协议栈学习

简介

zephyr主要支持BLE,对BR/EDR仅提供有限的支持
core5.3中BLE功能几乎全部支持,包括LE audio和mesh;
BR/EDR仅支持部分,GPA,L2CAP,RFCOMM,SDP,(不过看到zephyr代码里也有HF,A2DP,AVDTP等)

zephyr可以仅被配置为controller或者host,也可以配置为既有controller也有host
zephyr仅做host时,支持跟多个controller同时通信

源码树层次

subsys/bluetooth/host

这里是host stack。处理HCI命令和事件地方,L2CAP,ATT,SMP等核心协议也在这里

subsys/bluetooth/controller

蓝牙控制器实现。实现HCI的控制器端,链路层以及对无线电收发器的访问

include/bluetooth/

公共API头文件。这些是应用程序需要包含的头文件,以便使用蓝牙功能

drivers/bluetooth

HCI传输层驱动。每个HCI传输层都需要自己的驱动程序。(三线uart或者5线uart,usb,spi等)

samples/bluetooth

蓝牙实例代码。

test/bluetooth

测试应用程序。这些应用程序用于验证蓝牙堆栈的功能。

doc/guides/bluetooth

额外的文档,比如PICS文档

HOST

在这里插入图片描述
GAP通过定义BLE使用的四个不同角色来简化蓝牙LE访问:
面向连接的角色:

  • 外围设备(例如智能传感器,通常具有有限的用户界面)
  • 中央设备(通常是移动电话或PC)

无连接的角色:

  • 广播者(发送BLE广告,例如智能信标)
  • 观察者(扫描BLE广告)

在面向连接的角色中,中央设备隐式的启用观察者角色,外围设备隐式的启用广播者角色

注册gatt service的方法

使用BT_GATT_SERVICE_DEFINE宏
实际管理单位应该是attr

/***  @brief Statically define and register a service.**  Helper macro to statically define and register a service.**  @param _name Service name.*/
#define BT_GATT_SERVICE_DEFINE(_name, ...)				\const struct bt_gatt_attr attr_##_name[] = { __VA_ARGS__ };	\const STRUCT_SECTION_ITERABLE(bt_gatt_service_static, _name) =	\BT_GATT_SERVICE(attr_##_name)
/** @brief GATT Attribute structure. */
struct bt_gatt_attr {/** Attribute UUID */const struct bt_uuid *uuid;bt_gatt_attr_read_func_t read;/** Attribute write callback */bt_gatt_attr_write_func_t write;/** Attribute user data */void *user_data;/** Attribute handle */uint16_t handle;/** @brief Attribute permissions.** Will be 0 if returned from ``bt_gatt_discover()``.*/uint16_t perm;
};

这篇关于zephyr学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764205

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件