谷歌最强开源大模型亮相!Gemini技术下放,笔记本就能跑,可商用

本文主要是介绍谷歌最强开源大模型亮相!Gemini技术下放,笔记本就能跑,可商用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

明敏 发自 凹非寺
量子位 | 公众号 QbitAI

谷歌大模型,开源了!

一夜之间,Gemma系列正式上线,全面对外开放。

它采用Gemini同款技术架构,主打开源和轻量级,免费可用、模型权重开源、允许商用,同时笔记本可跑

共有2B和7B两个版本,性能全面超越开源标杆Llama 2。

图片

每种规模都有预训练和指令微调版本,可在Kaggle、Colab Notebook、Google Cloud中访问。

而且支持JAX、PyTorch和TensorFlow通过原生Keras 3.0进行推理和监督式微调(SFT),适应多种开发需求和环境。得益于对JAX的支持,它还能进行快速推理。

目前模型也同步上线Hugging Chat,可在线体验试玩。

发布几个小时里,Gemma火速成为圈内最热话题,成为议论焦点。

Keras作者François Chollet高呼:最强开源大模型,刚刚易主。

图片

大神卡帕西第一时间赶来解析技术报告。

图片

AI圈内大佬更是表示,谷歌做开源是明智之举啊。

图片

网友们都很兴奋,已经有人开始问考虑推出更多语言版本吗?

图片

还有人提出2B的规模,是不是意味着也能支持安卓/iOS本地推理?

图片

多性能超越同规模开源模型

具体来看Gemma的技术报告。

在18个任务中,Gemma在11个任务上表现优于同规模优质开源模型。

图片

Gemma包含两种规格。

7B版本参数量约78亿,面向GPU和TPU上的高效部署和开发,2B版本参数量约25亿,用于CPU和端侧应用程序。

它基于Transformer解码器架构,关键模型参数如下。

图片

图片

相比于基础Transformer,Gemma进行了一些升级。

7B版本使用多头注意力机制,2B版本使用多查询注意力机制。

在每一层中使用旋转位置嵌入代替绝对位置嵌入;使用GeGLU激活函数替代标准ReLU非线性。

同时对每一个子层的输入和输出都进行归一化。

Gemma 2B/7B分别使用了2T和6T token进行训练,主要来自网络文档、数学和代码,不过这些数据不是多模态的。

为了兼容,谷歌使用了Gemini的SentencePiece tokenizer子集,它可以分割数字,不删除额外的空格,并对未知token进行字节级编码。

大神卡帕西关注了Tokenizer部分,他表示,Gemma的tokenizer和Llama 2的不同,但和GPT一致。

图片

François Chollet认为Gemma最大的特点是谷歌拥有SOTA级测试集过滤机制,这意味着基准数据能相当准确地反映了模型在实际环境中的表现。

谷歌也报告了Gemma在MMLU等基准上的表现。

图片

最后,谷歌还强调了Gemma的安全隐私性能。

实验数据显示Gemma不会存储敏感数据,但可能会记住一些潜在隐私数据。不过报告表示这个数据可能因为工具原因有所误报。

图片

网友已开始实测

开放以后不少网友已经上手实测Gemma。

有人反馈写代码的速度非常快。

图片

关于技术细节的讨论也很多。

不少人关注到Gemma做到了“以小博大”,2B版本性能超越Mistral2 7B。

图片

也有人觉得Gemma使用的数据量有点大……

图片

但对于谷歌开放模型的态度,大家是一律拍手称赞。

通过几十个开源项目,每个人都有机会打败巨头。

图片

现在压力再次给到“CloseAI”……

也有人猜测,按照两大巨头互掐的规律,OpenAI新大招可能就在路上了。

图片

这篇关于谷歌最强开源大模型亮相!Gemini技术下放,笔记本就能跑,可商用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764167

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应