【ICS】CS:APP3e Homework 2.97 关于整型转单精度浮点数的方法讨论

2024-03-01 20:38

本文主要是介绍【ICS】CS:APP3e Homework 2.97 关于整型转单精度浮点数的方法讨论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS:APP3e Homework 2.97 关于整型转单精度浮点数的方法讨论

  • 关于整型转单精度浮点数的方法讨论
    • CS:APP原题
    • 题目分析
    • 实现代码
    • 原理解释
    • 其他方法
    • 启示与思考

关于整型转单精度浮点数的方法讨论

CS:APP即著名的计算机系统书籍《Computer Systems: A Programmer’s Perspective》(《深入理解计算机系统》),本篇博客基于其第三版第二章课后题2.97,讨论基于移位操作的整型转单精度浮点数底层实现,提供了笔者自己的原创代码以及网络上一些现有的实现代码。

CS:APP原题

2.97 遵循位级浮点编码规则, 实现具有如下原型的函数:
/*Compute (float)i */
float_bits float_i2f(int i);
对于整数i,这个函数计算(float) i 的位级表示。
测试你的函数,对参数f可以取的所有223个值求值,将结果与你使用机器的浮点运算得到的结果相比较。

题目分析

作为该章课后作业的最后一题,以及书中标注的四星难度,这个题还是需要花费一些时间才能做出来的。题目要求读者自己通过一些逻辑、位运算这样较为底层的操作实现C语言中从整型到单精度浮点型类型转换,而不能使用浮点数据类型、运算或者常数。其他限制这里不再列举,具体参照原书。
C语言中从整型至单精度浮点数的强制类型转换,并非像无符号数和补码转换位不变,直接映射,而是转换成对应的值。
所以,对于两者的转换,我们能够采用的方法就是根据IEEE754标准中浮点数的构成原则与整数补码的位关系找到规律,从而进行映射。
关于IEEE754标准及补码的二进制知识,本文不再赘述。

实现代码

这里首先给出笔者经过一段时间研究与测试得到的最终代码。

#include <stdio.h>typedef unsigned float_bits;/* Compute (float)i */
float_bits float_i2f(int i);
float u2f(unsigned x);int main()
{int i = 0;printf("If you want to stop, just type 0.\n");do{printf("Please input an integer number:");scanf("%d",&i);printf("%g\t%g\n",(float)i,u2f(float_i2f(i)));}while(i!=0);return 0;
}float_bits float_i2f(int i)
{if (i == 0)return 0;/*因为无符号数和浮点数均可用0x00000000表示0,所以当整数i为0时可直接返回*/unsigned s = i>>31<<31;/*通过左移和右移使除符号位外均为0,以便最后的或操作*/if ((s>>31) == 1)i = ~(i-1);/*若输入的整数为负数,只需要单独讨论其符号位。因为对于浮点数来讲相反数的其它位是相同的,所以我们先把其按照补码规则转化为其相反数(正数),然后就可以和正数同样处理,最后通过或操作可以保证其符号位*/unsigned m_bits = 0;//补码除去第一位后的有效位数(原因参照浮点数规格化数的表示)unsigned e;//阶码unsigned m = (unsigned)i;//未经处理的尾数unsigned isLow = 0;//确定尾数长短位置的Flagint j = 0;for (j = 0; j<32; j++){if (i>>(31-j)){m_bits = 32-j;break;}}/*确定补码的有效位数,通过循环移位,直到移位后结果不是0,从而确定其有效长度,忽略前面的0位。如果是负数,因为之前我们已经将其最高位通过转为为对应相反数,故不会因为最高位而影响有效位数。 */m_bits--;m = m<<(32-m_bits)>>(32-m_bits);/*根据规格化数构成方法排除第一位影响*/e = (m_bits+127)<<23;/*根据规格化数构成方法确定阶码*/if (m_bits <23)isLow = 1;if (isLow)m = m <<(23-m_bits);elsem = m >>(m_bits-23);/*对于单精度浮点数,符号位1位,阶码位8位,尾数位23位,以此作为参照选择左移右移,得到最终正确位置的尾数*/return s|e|m;/*通过或操作,合并符号位、阶码、尾数*/
}float u2f(unsigned x)
{return *(float*)&x;/*位不变的将无符号数转化为对应单精度浮点数*/
}

原理解释

其实这个题的原理,书中已经给出。
《深入理解计算机系统 第三版》P82
理解了这个,我们只需要把这个原理“翻译”成C语言代码。简单的说就是获取对应的尾数以及阶码,并注意一下对于正负的讨论。归根到底还是考察对IEEE754标准的理解。
具体的解释可以参照给出的代码注释。

其他方法

笔者在起初做题时尝试去参考网上一些方法,后来觉得尝试去理解其他人的方法不如自己试试能否实现。当然,笔者的代码中也有一些现成思路的影子。尽管还没有研究明白,但这里引用下网上其他的方法,供大家参考。
方法一:

#include <stdio.h>
#include <limits.h>typedef unsigned float_bits;float_bits float_i2f(int i);
unsigned bits_length(int x);
unsigned bits_mask(unsigned x);
float u2f(unsigned x);int main()
{int i = 123;printf("%f\t%f\n", (float)i, u2f(float_i2f(i)));i = -123;printf("%f\t%f\n", (float)i, u2f(float_i2f(i)));i = 0;printf("%f\t%f\n", (float)i, u2f(float_i2f(i)));i = (~0);printf("%f\t%f\n", (float)i, u2f(float_i2f(i)));i = (1 << 31);printf("%f\t%f\n", (float)i, u2f(float_i2f(i)));return 0;
}float_bits float_i2f(int i)
{unsigned sign, exp, frac, bias;bias = 127;if (i == 0) return 0;if (i == INT_MIN) { // -1sign = 1;exp = 31 + bias; frac = 0; // -1是整数,没有小数部分return sign << 31 | exp << 23 | frac;}sign = i > 0 ? 0 : 1;if (i < 0)i = -i;unsigned bits_num = bits_length(i);unsigned fbits_num = bits_num - 1;unsigned fbits;exp = bias + fbits_num;fbits = i & bits_mask(1 << fbits_num - 1);if (fbits_num <= 23)frac = fbits << (23 - fbits_num);else {unsigned offset = fbits_num - 23;frac = fbits >> offset;unsigned round_mid = 1 << (offset - 1);unsigned round_part = fbits & bits_mask(1 << offset - 1);if (round_part > round_mid)++frac;else if (round_part == round_mid) {if (frac & 0x1)++frac;}}return sign << 31 | exp << 23 | frac;
}unsigned bits_length(int x)
{unsigned ux = (unsigned) x;unsigned count = 0;while (ux > 0) {ux >>= 1;++count;} return count;
}unsigned bits_mask(unsigned x)
{x |= x >> 1;x |= x >> 2;x |= x >> 4;x |= x >> 8;x |= x >> 16;return x;
}float u2f(unsigned x)
{return *(float *)&x;
}

原文地址:https://www.cnblogs.com/chritran-dlay/p/9279184.html

方法二:

/** float-i2f.c*/
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include "float-i2f.h"/** Assume i > 0* calculate i's bit length** e.g.* 0x3 => 2* 0xFF => 8* 0x80 => 8*/
int bits_length(int i) {if ((i & INT_MIN) != 0) {return 32;}unsigned u = (unsigned)i;int length = 0;while (u >= (1<<length)) {length++;}return length;
}/** generate mask* 00000...(32-l) 11111....(l)** e.g.* 3  => 0x00000007* 16 => 0x0000FFFF*/
unsigned bits_mask(int l) {return (unsigned) -1 >> (32-l);
}/** Compute (float) i*/
float_bits float_i2f(int i) {unsigned sig, exp, frac, rest, exp_sig /* except sig */, round_part;unsigned bits, fbits;unsigned bias = 0x7F;if (i == 0) {sig = 0;exp = 0;frac = 0;return sig << 31 | exp << 23 | frac;}if (i == INT_MIN) {sig = 1;exp = bias + 31;frac = 0;return sig << 31 | exp << 23 | frac;}sig = 0;/* 2's complatation */if (i < 0) {sig = 1;i = -i;}bits = bits_length(i);fbits = bits - 1;exp = bias + fbits;rest = i & bits_mask(fbits);if (fbits <= 23) {frac = rest << (23 - fbits);exp_sig = exp << 23 | frac;} else {int offset = fbits - 23;int round_mid = 1 << (offset - 1);round_part = rest & bits_mask(offset);frac = rest >> offset;exp_sig = exp << 23 | frac;/* round to even */if (round_part < round_mid) {/* nothing */} else if (round_part > round_mid) {exp_sig += 1;} else {/* round_part == round_mid */if ((frac & 0x1) == 1) {/* round to even */exp_sig += 1;}}}return sig << 31 | exp_sig;
}

原文地址:https://dreamanddead.gitbooks.io/csapp-3e-solutions/chapter2/2.97.html

启示与思考

这段时间在学习计算机系统的相关知识,涉及到一些底层二进制实现原理,包括一些整数、浮点数编码与转换。本题就是一个典型的例子,涉及到许多相关知识。尽管笔者的代码很多地方写的还是比较幼稚,但是在一定程度上帮助笔者加深对于计算机底层编码实现的一些理解。
具体到这个题,我们要学会利用书中给出的原理,尝试去自己实现,并灵活运用各种位及逻辑操作,善作总结,这样有助于我们更好的理解书中内容。

这篇关于【ICS】CS:APP3e Homework 2.97 关于整型转单精度浮点数的方法讨论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763735

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee