数电学习笔记——逻辑函数及其描述方法

2024-03-01 20:20

本文主要是介绍数电学习笔记——逻辑函数及其描述方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、逻辑函数

二、逻辑函数的描述方法

1、逻辑真值表

2、逻辑函数式

3、逻辑图

4、波形图

三、逻辑函数的两种标准形式

1、最小项与最大项

最小项

最小项的性质

最大项

最大项的性质

2、最大项与最小项的关系

3、逻辑函数的最小项之和形式

4、逻辑函数的最大项之和形式


一、逻辑函数

以逻辑变量作为输入,以运算结果作为输出,那么当输入确定时,输出也就确定下来了。这是一种函数关系,称为逻辑函数,其写作Y=F(A,B,C,...)

由于该函数的输入与输出只有0/1两种状态,所以它是二值逻辑函数。

二、逻辑函数的描述方法

1、逻辑真值表

此方法不作赘述,在之前的文章已经提到多次。

2、逻辑函数式

将输入与输出之间的逻辑关系式写成与、或、非等运算的组合式,即逻辑代数式,也就得到了逻辑函数式。

例如:Y=A(B+C)

3、逻辑图

将逻辑函数式中各变量之间的与、或、非等逻辑关系用图形符号表示出来,就可以画出描述函数关系的逻辑图。

例如:

图2.1 逻辑图

4、波形图

如果将逻辑函数输入变量每一种可能出现的取值与对应的输出值按时间顺序依次排序起来,就得到了描述该逻辑函数的波形图,也称时序图。

图2.2 波形图

卡诺图与硬件描述语言后面的文章再讲。

三、逻辑函数的两种标准形式

1、最小项与最大项

最小项

在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。n变量的最小项个数有 2^{n}个。

图3.1 三变量最小项的编号表

最小项是与运算,所以要使每一个因子都为1,最终值才能为1。

最小项的性质

①在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1;

②全体最小项之和为1;

③任意两个最小项的乘积为0;

④具有相邻性的两个最小项之和可以合并成一项并消去一对因子。

相邻性:若两个最小项只有一个因子不同,则称这两个最小项聚优品相邻性。比如A'BC'&ABC'就具有相邻性。

A'BC' + ABC' = (A+A')BC'=BC'-------------------------由公式A+A'=1得

最大项

在n变量逻辑函数中,若M为n个变量之和,而且这n个变量均以原变量或反变量的形式在M中出现一次,则称M为该组变量的最大项。

图3.2 三变量最大项的编号表

最大项的性质

①在输入变量的任何取值下必有一个最大项,而且只有一个最大项的值为0;

②全体最大项之和为0;

③任意两个最大项之和为1;

④只有一个变量不同的两个最大项的乘积等于各相同变量之和。

2、最大项与最小项的关系

M_{i}=m_{i}^{'}

3、逻辑函数的最小项之和形式

第一步:将给定的逻辑函数化成若干乘积项之和的与或形式(积之和);

第二步:利用公式A+A'=1将缺少的因子补全(凑出ABC)

例1:Y=ABC'+BC= m_{3}+m_{6}+m_{7}

也可以写作:Y(A,B,C)=Σm(3,6,7)

4、逻辑函数的最大项之和形式

第一步:将给定的逻辑函数化成若干乘积项之和的或与形式(和之积);

第二步:利用公式A·A'=0将缺少的因子补全(凑出ABC)

例2:Y=A'B+AC=(A+B+C)(A+B+C')(A'+B+C)(A'+B'+C)

也可以写作:Y(A,B,C,D)=ΠM(0,1,4,6)

若文章内容出现错误,恳请各位批评指正,感激不尽!

这篇关于数电学习笔记——逻辑函数及其描述方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763697

相关文章

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3