【马普所2008】机器学习中的核方法(上)

2024-03-01 18:10

本文主要是介绍【马普所2008】机器学习中的核方法(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hofmann T , Sch?Lkopf B , Smola A J . Kernel methods in machine learning[J]. Annals of Stats, 2008, 36(3).
[1] Integrating structured biological data by kernel
maximum mean discrepancy

本文是对于文献‘Kernel Methods in Machine Learning’的整理和总结。
该文章出版时间为2008年,比较久远,可以作为机器学习基础知识看待。

引入核方法的目的

  1. 概括
    传统的机器学习理论和算法都是基于线性空间的,而实际问题中的数据分析问题通常需要使用非线性方法解决。而引入正定核可以在理论和实际问题中都达到最好的效果。

  2. 基本原理
    正定核对应着特征空间的点乘。只要能够用核方法将everythhing都转化到特征空间,就可以在特征空间里用线性方法进行判别,而不需要对高维特征空间进行特殊计算。

核(尤其是正定核)的性质

介绍性的例子
  1. 定义问题
    假设是二分类问题,有一组训练集有n个样本:(x1,y1),(x2,y2),…,(xn,yn),y取值为{-1,1}。对于一个新的输入样本x,希望能预测对应的y,让(x,y)与训练样本相似。因此需要对xi所在的空间 X ,和yi所在的{-1,1}中元素的相似度进行衡量。后者显而易见,但前者需要定义函数:
    在这里插入图片描述并且该函数满足:
    在这里插入图片描述其中在这里插入图片描述将xi映射到点乘空间 H 中,也称为特征空间。
    也就是说,在 X 空间上的k(xi,xj)等价于在特征空间的点乘。

  2. 结合图例
    在这里插入图片描述
    对于上图的二分类问题,我们采用这样的分类方法,即,当新样本输入x对应的特征空间中的在这里插入图片描述更靠近训练样本中正类的均值在这里插入图片描述时,认为其对应输出y=+1,反之亦然。
    因此用指示函数sgn(.)表示分类器为:
    在这里插入图片描述* 与SVM关系
    分类器(5)与SVM有很强的联系。在特征空间,该分类器为显示为线性,但是在输入空间X中用核的扩展表示(represented by a kernel expansion)。相当于用特征空间里的超平面进行分类。SVM与(5)所示分类器的区别在于 w = c + − c − w=c_+ - c_- w=c+c的法向量上.

  • 该法向量的方向决定了超平面的方向,长度决定了两个类别的生成分布。(?[1])

  • 分析
    c+、c-即为特征空间内两类样本点的均值,那么他们之间的连线的垂线(点虚线)就把整个特征空间分为两个部分,连线上到两个均值点距离相等,左边的点离c+更近,反之亦然。
    对应公式中的b,即为正负两类数据的均值在特征空间的点之间的差距的1/2,可以看做是向量 c-c+ 的一半,作用是将c±的中点移到原点,即将虚线、c±连线平移、旋转到与坐标轴重合的位置,方便使用指示函数。

  1. 考虑特殊情况
    当b=0时,即当c-与c+连线中点与原点重合,用下式估计两个概率分布:
    在这里插入图片描述那么分类器(5)就变成了贝叶斯决策法则(判断p+大则认为y=1,p-大则y=-1).
正定核
引入问题

在上文中已经要求核满足下式,即让其与点积空间的点乘相对应 。那么在这一部分我们就要验证满足该式的这一类核是正定的。
在这里插入图片描述
首先引入一些定义

  1. 格拉姆矩阵 (Gram matrix)

给定核k和输入 x 1 , . . . , x n ∈ x1,..., xn \in x1,...,xnX,有nxn的矩阵K,元素Kij:= k(xi,xj),则称之为k的关于输入$x1,…, xn $的格拉姆矩阵。

2.正定核

实对称矩阵Kij,对于任意c ∈ \in R,有
在这里插入图片描述则该矩阵为正定矩阵。若当且仅当c1=c2=…=cn=0时等号成立,则K为严格正定矩阵.

  1. 正定核

假设X是非空集合,k是XxX→R的一个映射,对于任意n∈N,xi∈X,i∈[n],([n]={1,2,3…,n}),都能够得到一个正定的格拉姆矩阵,则k称为正定核。
若得到的都是严格正定的格拉姆矩阵,则k称为严格正定核。

有时为了简略,我们会将正定核简称为核。为了简化,我们将问题限制在实数域上。然而,通过一些小的变化也可以扩展到复数域。

建立再生核希尔伯特空间

用核方法进行相关性估计和数据分析

再生核Hilbert空间在定义统计模型的应用

专业词汇

positive definite kernel 正定核
dot product space 点积空间

这篇关于【马普所2008】机器学习中的核方法(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763340

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验