时间序列预测-女性出生数量预测

2024-03-01 16:59

本文主要是介绍时间序列预测-女性出生数量预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 数据集构建

原始数据为:

然后通过滑窗来构造多个X,如下图所示,第一列为是将原始值往后移6个时间步,其他列依次类推。
在这里插入图片描述
我们去除空值之后,最后数据集为:
在这里插入图片描述

这里的X就是前六列特征,最后一列为y是预测值

预测女性未来出生数量
每日女性出生数据集,即三年内的每月出生数。

下载链接:https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv

完整代码

from numpy import asarray
from pandas import DataFrame
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_absolute_error
from xgboost import XGBRegressor# transform a time series dataset into a supervised learning dataset
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):n_vars = 1 if type(data) is list else data.shape[1]df = DataFrame(data)cols = list()# input sequence (t-n, ... t-1)for i in range(n_in, 0, -1):cols.append(df.shift(i))# forecast sequence (t, t+1, ... t+n)for i in range(0, n_out):cols.append(df.shift(-i))# put it all togetheragg = concat(cols, axis=1)# drop rows with NaN valuesif dropnan:agg.dropna(inplace=True)return agg.valuesseries = read_csv('data/daily-total-female-births.csv', header=0, index_col=0)
values = series.values
data = series_to_supervised(values, n_in=6)def train_test_split(data, n_test):return data[:-n_test, :], data[-n_test:, :]def xgboost_forecast(train, testX):# transform list into arraytrain = asarray(train)# split into input and output columnstrainX, trainy = train[:, :-1], train[:, -1]# fit modelmodel = XGBRegressor(objective='reg:squarederror', n_estimators=1000)model.fit(trainX, trainy)# make a one-step predictionyhat = model.predict(asarray([testX]))return yhat[0]# walk-forward validation for univariate data
def walk_forward_validation(data, n_test):predictions = list()# split datasettrain, test = train_test_split(data, n_test)# seed history with training datasethistory = [x for x in train]# step over each time-step in the test setfor i in range(len(test)):# split test row into input and output columnstestX, testy = test[i, :-1], test[i, -1]# fit model on history and make a predictionyhat = xgboost_forecast(history, testX)# store forecast in list of predictionspredictions.append(yhat)# add actual observation to history for the next loophistory.append(test[i])# summarize progressprint('>expected=%.1f, predicted=%.1f' % (testy, yhat))# estimate prediction errorerror = mean_absolute_error(test[:, -1], predictions)return error, test[:, -1], predictions# %%# transform the time series data into supervised learning
data = series_to_supervised(values, n_in=6)
# evaluate
mae, y, yhat = walk_forward_validation(data, 12)

这篇关于时间序列预测-女性出生数量预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763168

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

POJ1631最长单调递增子序列

最长单调递增子序列 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.util.StringTokenizer;publ

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

批处理以当前时间为文件名创建文件

批处理以当前时间为文件名创建文件 批处理创建空文件 有时候,需要创建以当前时间命名的文件,手动输入当然可以,但是有更省心的方法吗? 假设我是 windows 操作系统,打开命令行。 输入以下命令试试: echo %date:~0,4%_%date:~5,2%_%date:~8,2%_%time:~0,2%_%time:~3,2%_%time:~6,2% 输出类似: 2019_06

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划

O(n)时间内对[0..n^-1]之间的n个数排序

题目 如何在O(n)时间内,对0到n^2-1之间的n个整数进行排序 思路 把整数转换为n进制再排序,每个数有两位,每位的取值范围是[0..n-1],再进行基数排序 代码 #include <iostream>#include <cmath>using namespace std;int n, radix, length_A, digit = 2;void Print(int *A,