tensorflow常用函数的记录之tf.reshape()

2024-03-01 03:58

本文主要是介绍tensorflow常用函数的记录之tf.reshape(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

tf.reshape()                       


reshape()的括号中所包含的参数有哪些呢?常见的写法有tf.reshape((28,28)):

tf.reshape(tensor,shape,name=None)

函数的作用是将tensor变换为参数shape形式,其中的shape为一个列表形式,特殊的是列表可以实现逆序的遍历,即list(-1).-1所代表的含义是我们不用亲自去指定这一维的大小,函数会自动进行计算,但是列表中只能存在一个-1。(如果存在多个-1,就是一个存在多解的方程)
下面就说一下reshape是如何进行矩阵的变换的,其简单的流程就是:
将矩阵t变换为一维矩阵,然后再对矩阵的形式进行更改就好了,具体的流程如下:

reshape(t,shape) =>reshape(t,[-1]) =>reshape(t,shap

实际操作中,有如下效果:我创建了一个一维的数组

>>>import numpy as np
>>>a= np.array([1,2,3,4,5,6,7,8])
>>>a
array([1,2,3,4,5,6,7,8])
>>>

使用reshape()方法来更改数组的形状,使得数组成为一个二维的数组:(数组中元素的个数是2×4=8)

>>>d = a.reshape((2,4))
>>>d
array([[1, 2, 3, 4],[5, 6, 7, 8]])

进一步提升,可以得到一个三维的数组f:(注意数组中元素的个数时2×2×2=8)

>>>f = a.reshape((2,2,2))
>>>f
array([[[1, 2],[3, 4]],[[5, 6],[7, 8]]])

注意:形状发生变化的原则时数组元素的个数是不能发生改变的,比如像下面这样的写法就会报错:
(元素的个数是2×2=4,所以会报错)

>>> e = a.shape((2,2))
Traceback (most recent call last):File "<stdin>", line 1, in <module>
TypeError: 'tuple' object is not callable

-1 的应用:-1 表示不知道该填什么数字合适的情况下,可以选择,由python通过a和其他的值3推测出来,比如,这里的a 是二维的数组,数组中共有6个元素,当使用reshape()时,6/3=2,所以形成的是3行2列的二维数组,可以看出,利用reshape进行数组形状的转换时,一定要满足(x,y)中x×y=数组的个数。

>>>a = np.array([[1,2,3],[4,5,6]])
>>>np.reshape(a,(3,-1)) 
array([[1, 2],[3, 4],[5, 6]])
>>> np.reshape(a,(1,-1))
array([[1, 2, 3, 4, 5, 6]])
>>> np.reshape(a,(6,-1))
array([[1],[2],[3],[4],[5],[6]])
>>> np.reshape(a,(-1,1))
array([[1],[2],[3],[4],[5],[6]])

下面是两张2×3大小的图片(不知道有几张图片可以用-1代替),如何把所有二维照片给转换成一维的,请看以下三维的数组:

>>>image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]])
>>>image.shape
(2,2,3)
>>>image.reshape((-1,6))
array([[1, 2, 3, 4, 5, 6],[1, 1, 1, 1, 1, 1]])
>>> a = image.reshape((-1,6))
>>> a.reshape((-1,12))
array([[1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1]])
a.reshape((12,-1))
array([[1],[2],[3],[4],[5],[6],[1],[1],[1],[1],[1],[1]])
>>> a.reshape([-1])
array([1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1])

通过reshape生成的新的形状的数组和原始数组共用一个内存,所以一旦更改一个数组的元素,另一个数组也将会发生改变。

>>>a[1] = 100
>>>a
array([  1, 100,   3,   4,   5,   6,   7,   8])
>>> d
array([[  1, 100,   3,   4],[  5,   6,   7,   8]])

最后再给大家呈现一下官方给出的例子:


# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],[4, 5, 6],[7, 8, 9]]# tensor 't' is [[[1, 1], [2, 2]],
#                [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],[3, 3, 4, 4]]# tensor 't' is [[[1, 1, 1],
#                 [2, 2, 2]],
#                [[3, 3, 3],
#                 [4, 4, 4]],
#                [[5, 5, 5],
#                 [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]# -1 can also be used to infer the shape# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],[2, 2, 2],[3, 3, 3]],[[4, 4, 4],[5, 5, 5],[6, 6, 6]]]# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

这篇关于tensorflow常用函数的记录之tf.reshape()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761143

相关文章

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L