TensorFlow下反卷积(Deconvolution)的实现

2024-03-01 03:58

本文主要是介绍TensorFlow下反卷积(Deconvolution)的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介反卷积的过程

如图所示是一个卷积的过程
那么反卷积就应该是一个逆向的过程

假设输入如下:

[[1,0,1],[0,2,1],[1,1,0]]

反卷积卷积核如下:

[[ 1, 0, 1],[-1, 1, 0],[ 0,-1, 0]]

现在通过stride=2来进行反卷积,使得尺寸由原来的3*3变为6*6.那么在Tensorflow框架中,反卷积的过程如下(不同框架在裁剪这步可能不一样):

反卷积实现例子

其实通过我绘制的这张图,就已经把原理讲的很清楚了。大致步奏就是,先填充0,然后进行卷积,卷积过程跟上一篇文章讲述的一致。最后一步还要进行裁剪。好了,原理讲完了,(#.#)....

代码

上一篇文章我们只针对了输出通道数为1进行代码实现,在这篇文章中,反卷积我们将输出通道设置为多个,这样更符合实际场景。

先定义输入和卷积核:

input_data=[
               [[1,0,1],
                [0,2,1],
                [1,1,0]],

               [[2,0,2],
                [0,1,0],
                [1,0,0]],

               [[1,1,1],
                [2,2,0],
                [1,1,1]],

               [[1,1,2],
                [1,0,1],
                [0,2,2]]

            ]
weights_data=[
                [[[ 1, 0, 1],
                  [-1, 1, 0],
                  [ 0,-1, 0]],

                 [[-1, 0, 1],
                  [ 0, 0, 1],
                  [ 1, 1, 1]],

                 [[ 0, 1, 1],
                  [ 2, 0, 1],
                  [ 1, 2, 1]],

                 [[ 1, 1, 1],
                  [ 0, 2, 1],
                  [ 1, 0, 1]]],

                [[[ 1, 0, 2],
                  [-2, 1, 1],
                  [ 1,-1, 0]],

                 [[-1, 0, 1],
                  [-1, 2, 1],
                  [ 1, 1, 1]],

                 [[ 0, 0, 0],
                  [ 2, 2, 1],
                  [ 1,-1, 1]],

                 [[ 2, 1, 1],
                  [ 0,-1, 1],
                  [ 1, 1, 1]]] ]

上面定义的输入和卷积核,在接下的运算过程如下图所示:

执行过程

可以看到实际上,反卷积和卷积基本一致,差别在于,反卷积需要填充过程,并在最后一步需要裁剪。具体实现代码如下:

def compute_conv(fm,kernel):
    [h,w]=fm.shape[k,_]=kernel.shaper=int(k/2)
    #定义边界填充0后的map
    padding_fm=np.zeros([h+2,w+2],np.float32)
    #保存计算结果
    rs=np.zeros([h,w],np.float32)
    #将输入在指定该区域赋值,即除了4个边界后,剩下的区域
    padding_fm[1:h+1,1:w+1]=fm#对每个点为中心的区域遍历
    for i in range(1,h+1):
        for j in range(1,w+1):
            #取出当前点为中心的k*k区域
            roi=padding_fm[i-r:i+r+1,j-r:j+r+1]
            #计算当前点的卷积,对k*k个点点乘后求和
            rs[i-1][j-1]=np.sum(roi*kernel)
    return rs #填充0
def fill_zeros(input):
    [c,h,w]=input.shapers=np.zeros([c,h*2+1,w*2+1],np.float32)
    for i in range(c):
        for j in range(h):
            for k in range(w):
                rs[i,2*j+1,2*k+1]=input[i,j,k]
    return rsdef my_deconv(input,weights): #weights shape=[out_c,in_c,h,w]
    [out_c,in_c,h,w]=weights.shapeout_h=h*2
    out_w=w*2
    rs=[]
    for i in range(out_c):
        w=weights[i]
        tmp=np.zeros([out_h,out_w],np.float32)
        for j in range(in_c):
            conv=compute_conv(input[j],w[j]) #注意裁剪,最后一行和最后一列去掉
            tmp=tmp+conv[0:out_h,0:out_w]
        rs.append(tmp)
    return rs
def main():
    input=np.asarray(input_data,np.float32)
    input= fill_zeros(input)
    weights=np.asarray(weights_data,np.float32)
    deconv=my_deconv(input,weights)
    print(np.asarray(deconv))
if __name__=='__main__':
    main()

计算卷积代码,跟上一篇文章一致。代码直接看注释,不再解释。运行结果如下:

为了验证实现的代码的正确性,我们使用tensorflow的conv2d_transpose函数执行相同的输入和卷积核,看看结果是否一致。验证代码如下:

def tf_conv2d_transpose(input, weights):
    input_shape = input.get_shape().as_list()
    weights_shape = weights.get_shape().as_list()
    output_shape = [input_shape[0], input_shape[1] * 2, input_shape[2] * 2, weights_shape[2]]
    print("output_shape:", output_shape)

    deconv = tf.nn.conv2d_transpose(input, weights, output_shape=output_shape,strides=[1, 2, 2, 1], padding='SAME')
    return deconvdef main():
    weights_np = np.asarray(weights_data, np.float32)
    # 将输入的每个卷积核旋转180°
    weights_np = np.rot90(weights_np, 2, (2, 3))

    const_input = tf.constant(input_data, tf.float32)
    const_weights = tf.constant(weights_np, tf.float32)

    input = tf.Variable(const_input, name="input")
    # [c,h,w]------>[h,w,c]
    input = tf.transpose(input, perm=(1, 2, 0))
    # [h,w,c]------>[n,h,w,c]
    input = tf.expand_dims(input, 0)

    # weights shape=[out_c,in_c,h,w]
    weights = tf.Variable(const_weights, name="weights")
    # [out_c,in_c,h,w]------>[h,w,out_c,in_c]
    weights = tf.transpose(weights, perm=(2, 3, 0, 1))

    # 执行tensorflow的反卷积
    deconv = tf_conv2d_transpose(input, weights)

    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)

    deconv_val = sess.run(deconv)

    hwc = deconv_val[0]
    print(hwc)


if __name__ == '__main__':
    main()

上面代码中,有几点需要注意:

  1. 每个卷积核需要旋转180°后,再传入tf.nn.conv2d_transpose函数中,因为tf.nn.conv2d_transpose内部会旋转180°,所以提前旋转,再经过内部旋转后,能保证卷积核跟我们所使用的卷积核的数据排列一致。
  2. 我们定义的输入的shape为[c,h,w]需要转为tensorflow所使用的[n,h,w,c]。
  3. 我们定义的卷积核shape为[out_c,in_c,h,w],需要转为tensorflow反卷积中所使用的[h,w,out_c,in_c]

执行上面代码后,执行结果如下:

[[[[ 4.  4.][ 3.  1.][ 6.  7.][ 2.  0.][ 7.  7.][ 3.  2.]][[ 4.  5.][ 3.  6.][ 3.  0.][ 2.  1.][ 7.  8.][ 5.  5.]][[ 8.  8.][ 6.  0.][ 8.  8.][ 5. -2.][11. 14.][ 2.  2.]][[ 3.  3.][ 2.  3.][ 7.  9.][ 2.  8.][ 3.  1.][ 3.  0.]][[ 5.  3.][ 5.  0.][11. 13.][ 3.  0.][ 9. 11.][ 3.  2.]][[ 2.  3.][ 1.  5.][ 4.  3.][ 5.  1.][ 4.  3.][ 4.  0.]]]]

对比结果可以看到,数据是一致的,这个只是按照两个矩阵的对应位置的元素进行输出,(如[4,4]代表第一个矩阵的第一个元素和第二个矩阵的第一个元素)证明前面手写的python实现的反卷积代码是正确的

这篇关于TensorFlow下反卷积(Deconvolution)的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761141

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2