大数据开发规范-(更新版)

2024-02-29 22:12
文章标签 数据 开发 规范 更新版

本文主要是介绍大数据开发规范-(更新版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

大数据是什么,大数据是指规模庞大、种类繁多且处理速度快到难以使用传统数据库和软件工具来捕捉、管理和处理的数据集合。这些数据通常包括结构化数据(如关系数据库中的数据)、半结构化数据(如XML文件)和非结构化数据(如文本、图像、音频、视频等)。大数据的特点通常被总结为“3V”,即数据量大(Volume)、数据类型多样(Variety)和数据处理速度快(Velocity)。
大数据技术是为了应对大数据的挑战而诞生的一套技术体系,包括分布式存储、分布式计算、数据挖掘、机器学习等方面的技术。常见的大数据技术包括Hadoop、Spark、Hive、HBase、Kafka、Flink等。
大数据技术的应用非常广泛,涵盖了金融、电商、医疗、物流、社交媒体等各行各业。通过对大数据的采集、存储、处理和分析,企业和组织可以从中获得有价值的信息和洞察,用于业务决策、产品改进、市场营销等方面。
总之,大数据是指那些规模巨大、类型多样、处理速度快的数据集合,而大数据技术则是为了处理和利用这些数据而发展起来的一系列技术和工具。

大数据通常分几种

在大数据领域,创建表的方式通常取决于所使用的大数据存储和处理系统,比如Hadoop、Spark、Hive、Impala等。

创建表方式

Hive:Hive是一个基于Hadoop的数据仓库工具,可以通过类SQL语句来管理数据。在Hive中,可以使用类似于SQL的语法来创建表,例如:

CREATE TABLE table_name (column1 INT,column2 STRING,...
)

Impala:Impala是一个高性能的SQL查询引擎,也可以通过类似于SQL的语法来创建表,例如:

CREATE TABLE table_name (column1 INT,column2 STRING,...
)

Spark SQL:Spark SQL提供了类似于Hive的SQL查询功能,可以通过SQL语句来创建表,例如:

CREATE TABLE table_name (column1 INT,column2 STRING,...
)

HBase:HBase是一个分布式列存储数据库,在HBase中创建表需要定义表的列族和其他属性,例如:

create 'table_name', 'column_family1', 'column_family2'

Kudu:Kudu是一个快速分析存储层,也可以通过类似于SQL的语法来创建表,例如:

CREATE TABLE table_name (column1 INT,column2 STRING,...
)

Hive简单了解

Hive是一个基于Hadoop的数据仓库工具,提供类似于SQL的查询语言来进行数据分析。它将结构化的数据文件映射为一张数据库表,并支持类似于SQL的查询语句,使用户能够方便地进行数据分析和处理。
以下是Hive的一些主要特点和功能:

  1. SQL-Like Query Language:Hive提供类似于SQL的查询语言(HiveQL),使用户可以使用熟悉的SQL语法来查询和分析数据。
  2. Schema on Read:Hive采用“Schema on Read”的方式,即在读取数据时才会应用数据模式,这使得Hive能够处理各种格式和结构的数据。
  3. HDFS Integration:Hive与Hadoop分布式文件系统(HDFS)紧密集成,可以直接读取和写入HDFS中的数据。
  4. Extensibility:Hive支持自定义函数(UDF)、聚合函数(UDAF)和用户自定义序列化器等扩展功能,以满足不同场景下的需求。
  5. Partitioning and Bucketing:Hive支持按照列进行分区(Partitioning)和桶划分(Bucketing),可以提高查询性能和减少数据扫描量。
  6. Metadata Store:Hive使用元数据存储来管理表结构、分区信息、表位置等元数据,方便对数据进行管理和查询优化。
  7. Data Serialization Formats:Hive支持多种数据序列化格式,包括文本、Parquet、ORC等,用户可以根据需求选择合适的数据格式。
  8. 优化器和执行引擎:Hive提供了优化器和执行引擎来优化查询计划,提高查询性能。

创建表方式

在Hive中,可以使用不同的方式来创建分区表和分桶表,具体取决于数据的特点和查询需求。下面我将介绍在Hive中创建各种类型表的方式:

创建分区表(Partitioned Table):

创建一个基本的分区表可以使用如下的语法:

sqlCopy CodeCREATE TABLE partitioned_table_name (column1 INT,column2 STRING,...
)
PARTITIONED BY (partition_column STRING);

例如,如果我们有一个表示销售数据的表,并且想要按照日期进行分区,可以这样创建分区表:

sqlCopy CodeCREATE TABLE sales_data (transaction_id INT,date STRING,amount DOUBLE
)
PARTITIONED BY (sale_date STRING);
创建分桶表(Bucketed Table):

创建一个基本的分桶表可以使用如下的语法:

CREATE TABLE bucketed_table_name (column1 INT,column2 STRING,...
)
CLUSTERED BY (bucket_column) INTO num_buckets BUCKETS;

例如,如果我们有一个用户信息表,并且希望按照用户ID进行分桶存储,可以这样创建分桶表:

sqlCopy CodeCREATE TABLE user_info (user_id INT,username STRING,email STRING,age INT
)
CLUSTERED BY (user_id) INTO 4 BUCKETS;
加载分区数据和分桶数据:

一旦表被创建,可以使用类似以下的语句加载分区数据和分桶数据:

sqlCopy Code-- 加载分区数据
ALTER TABLE sales_data ADD PARTITION (sale_date='2024-01-01');-- 加载分桶数据
INSERT INTO TABLE user_info VALUES (1, 'Alice', 'alice@example.com', 25);

表的存储位置保存

在Hive中,表数据可以被保存在不同的存储格式和存储位置中,这取决于用户的需求和配置。下面是Hive中常见的表保存方式类型:

  1. Text File Format:表数据以文本文件的形式保存在HDFS上。这是一种常见的格式,易于查看和理解,但不适合大规模数据处理。
  2. Sequence File Format:表数据以序列文件的形式保存在HDFS上,提供了更高的压缩比和更快的读写速度。
  3. RCFile Format:RCFile(Record Columnar File)是Hive自定义的一种列式存储格式,可以显著提高查询性能和压缩比。
  4. ORC (Optimized Row Columnar) Format:ORC是一种高效的列式存储格式,具有更高的压缩比和更快的查询性能,适合大规模数据处理。
  5. Parquet Format:Parquet是一种列式存储格式,支持高效的压缩和列式存储,适合复杂结构数据和大规模数据分析。
  6. Avro Format:Avro是一种数据序列化格式,可用于将数据以二进制格式存储,并提供了数据模式的支持。
  7. Custom File Format:用户还可以定义自己的自定义文件格式,根据需求进行数据存储和处理。

表的存储位置也可以根据用户的配置进行设置,可以存储在默认的Hive表目录下,也可以指定存储在HDFS上的特定路径。

这篇关于大数据开发规范-(更新版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760270

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2