Python复合型数据避坑指南

2024-02-29 22:04

本文主要是介绍Python复合型数据避坑指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

列表(Lists)

 1. 修改可变对象

 2. 浅拷贝和深拷贝

元组(Tuples)

集合(Sets)

字典(Dictionaries)

 1. 键值唯一性

 2. 键的类型

实际应用场景

 1. 数据分析与清洗

 2. 网络爬虫与数据提取

 3. 软件开发与数据结构设计

 4. 数据库操作与ORM框架

总结


前言

在Python中,复合型数据(例如列表、元组、集合和字典)是非常常用的数据类型,它们可以以结构化的方式组织和操作数据。然而,由于其灵活性和特性,使用复合型数据时常常容易出现一些陷阱和问题。本指南将深入探讨Python复合型数据的常见陷阱,并提供一些避免这些问题的实用建议和技巧,以帮助更好地利用Python的复合型数据。

列表(Lists)

 1. 修改可变对象

列表是可变的数据类型,因此在对列表中的可变对象(如列表、字典等)进行操作时要格外小心。在修改列表中的可变对象时,很容易影响到原始列表。

# 修改可变对象会影响原始列表
original_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
modified_list = original_list
modified_list[0][0] = 100
print(original_list)  # 输出: [[100, 2, 3], [4, 5, 6], [7, 8, 9]]

 2. 浅拷贝和深拷贝

当需要复制列表时,应该了解浅拷贝和深拷贝的区别。浅拷贝只会复制列表的顶层元素,而深拷贝会递归复制所有嵌套的对象。

import copyoriginal_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]# 浅拷贝
shallow_copy = copy.copy(original_list)
shallow_copy[0][0] = 100
print(original_list)  # 输出: [[100, 2, 3], [4, 5, 6], [7, 8, 9]]# 深拷贝
deep_copy = copy.deepcopy(original_list)
deep_copy[0][0] = 1000
print(original_list)  # 输出: [[100, 2, 3], [4, 5, 6], [7, 8, 9]]

元组(Tuples)

元组是不可变的数据类型,因此不能对其进行修改。但需要注意,如果元组中包含可变对象,则可变对象的内容是可以被修改的。

# 元组中包含可变对象
tuple_with_list = ([1, 2, 3], [4, 5, 6])
tuple_with_list[0][0] = 100
print(tuple_with_list)  # 输出: ([100, 2, 3], [4, 5, 6])

集合(Sets)

集合是一种无序且不重复的数据类型,常用于去重和集合运算。然而,由于其不可索引的特性,有时可能会导致意外的结果。

# 集合不支持索引
my_set = {1, 2, 3}
print(my_set[0])  # 报错: 'set' object is not subscriptable

字典(Dictionaries)

 1. 键值唯一性

字典的键必须是唯一的,如果尝试使用相同的键来添加新的键值对,则会覆盖原有的键值对。

my_dict = {'a': 1, 'b': 2}
my_dict['a'] = 100
print(my_dict)  # 输出: {'a': 100, 'b': 2}

 2. 键的类型

字典的键可以是不可变的数据类型,如字符串、整数、元组等,但不能是可变的数据类型,如列表、集合、字典等。

# 字典的键不能是列表
my_dict = {[1, 2]: 'value'}  # 报错: unhashable type: 'list'

实际应用场景

复合型数据在Python中有着广泛的应用,从数据分析到软件开发,都可以见到它们的身影。通过一些实际的应用场景来进一步了解如何在实践中避免坑并正确地使用复合型数据。

 1. 数据分析与清洗

在数据分析中,经常需要处理来自各种数据源的复合型数据,比如JSON格式的数据、嵌套的字典和列表等。

下面是一个简单的示例,演示了如何从JSON文件中读取数据,并进行清洗和处理。

import json# 读取JSON文件
with open('data.json', 'r') as f:data = json.load(f)# 提取数据并清洗
cleaned_data = []
for item in data:if 'name' in item and 'age' in item:cleaned_data.append({'name': item['name'], 'age': item['age']})# 打印清洗后的数据
print(cleaned_data)

在这个示例中,首先读取了一个JSON文件,然后遍历数据并进行了清洗,只保留了包含'name'和'age'字段的数据。

 2. 网络爬虫与数据提取

在网络爬虫开发中,经常需要处理HTML页面中的复合型数据,比如提取表格数据、链接和文本内容等。

看一个示例,演示如何使用BeautifulSoup库从网页中提取表格数据。

from bs4 import BeautifulSoup
import requests# 发送HTTP请求获取网页内容
url = 'https://example.com'
response = requests.get(url)
html_content = response.text# 使用BeautifulSoup解析网页内容
soup = BeautifulSoup(html_content, 'html.parser')# 提取表格数据
table = soup.find('table')
if table:rows = table.find_all('tr')data = []for row in rows:cells = row.find_all('td')if cells:row_data = [cell.text.strip() for cell in cells]data.append(row_data)# 打印提取的表格数据
print(data)

在这个示例中,使用了requests库发送HTTP请求获取网页内容,然后使用BeautifulSoup库解析HTML内容,并提取了表格数据。

 3. 软件开发与数据结构设计

在软件开发中,合理设计和使用复合型数据结构可以提高代码的可读性、可维护性和性能。

看一个示例,演示如何设计一个简单的数据结构来表示学生信息。

class Student:def __init__(self, name, age, courses):self.name = nameself.age = ageself.courses = coursesdef __repr__(self):return f"Student(name={self.name}, age={self.age}, courses={self.courses})"# 创建学生对象
student1 = Student('Alice', 20, ['Math', 'Physics', 'Chemistry'])
student2 = Student('Bob', 22, ['History', 'Literature', 'Geography'])# 打印学生信息
print(student1)
print(student2)

在这个示例中,定义了一个Student类来表示学生信息,包括姓名、年龄和所修课程。然后,创建了两个学生对象,并打印它们的信息。

 4. 数据库操作与ORM框架

在数据库操作和使用ORM(对象关系映射)框架时,也经常需要处理复合型数据,比如查询结果集、模型对象和关联数据等。

下面是一个简单的示例,演示了如何使用SQLAlchemy ORM框架来定义模型和查询数据。

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker# 创建数据库引擎和会话
engine = create_engine('sqlite:///:memory:')
Base = declarative_base()
Session = sessionmaker(bind=engine)
session = Session()# 定义模型类
class Product(Base):__tablename__ = 'products'id = Column(Integer, primary_key=True)name = Column(String)price = Column(Integer)# 创建数据表
Base.metadata.create_all(engine)# 创建产品对象并插入数据
product1 = Product(name='Product 1', price=100)
product2 = Product(name='Product 2', price=200)
session.add(product1)
session.add(product2)
session.commit()# 查询数据
products = session.query(Product).all()# 打印查询结果
for product in products:print(product.name, product.price)

在这个示例中,使用了SQLAlchemy ORM框架来定义一个简单的产品模型,然后创建了两个产品对象并插入数据,最后查询了所有产品数据并打印出来。

总结

本文介绍了在使用Python复合型数据时常见的陷阱和问题,并提供了一些避免这些问题的实用建议和技巧。通过深入了解列表、元组、集合和字典的特性,以及如何正确地使用它们,可以更好地利用Python的复合型数据,编写出更加健壮和高效的代码。希望本文能够帮助大家避免在使用复合型数据时遇到的常见问题,并提高Python编程的水平和效率。

这篇关于Python复合型数据避坑指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760240

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了