数据结构——lesson4带头双向循环链表实现

2024-02-29 21:04

本文主要是介绍数据结构——lesson4带头双向循环链表实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言✨✨

💥个人主页:大耳朵土土垚-CSDN博客

💥 所属专栏:数据结构学习笔记​​​​​​

💥双链表与单链表的区分:单链表介绍与实现

💥对于malloc函数有疑问的:动态内存函数介绍

   感谢大家的观看与支持🌹🌹🌹 

   有问题可以写在评论区或者私信我哦~

 

目录

前言✨✨

一、💥💥什么是带头双向循环链表?

二、🥳🥳带头双向循环链表的实现 

1 .搭建链表基础

2.从内存中开辟一个节点

3. 创建返回链表的头结点

4.双向链表销毁

5.双向链表打印 

6.双向链表尾插 

7.双向链表尾删

8.双向链表头插 

9.双向链表头删 

10.双向链表查找

11.双向链表在pos的前面进行插入 

12.双向链表删除pos位置的节点 

三、💫💫拓展

四、🎉🎉结言 


一、💥💥什么是带头双向循环链表?

 

带头双向循环链表(Doubly Circular Linked List with a Head)是一种链表数据结构,它具有以下特点:

1.头节点:带头双向循环链表包含一个头节点,它位于链表的起始位置,并且不存储实际数据。头节点的前驱指针指向尾节点,头节点的后继指针指向第一个实际数据节点。

2.循环连接:尾节点的后继指针指向头节点,而头节点的前驱指针指向尾节点,将链表形成一个循环连接的闭环。这样可以使链表在遍历时可以无限循环,方便实现循环操作。

3.双向连接:每个节点都有一个前驱指针和一个后继指针,使得节点可以向前和向后遍历。前驱指针指向前一个节点,后继指针指向后一个节点。

        总结:带头双向循环链表可以支持在链表的任意位置进行插入和删除操作,并且可以实现正向和反向的循环遍历。通过循环连接的特性,链表可以在连续的循环中遍历所有节点,使得链表的操作更加灵活和高效。

如下图所示:

 

 

结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了。 

二、🥳🥳带头双向循环链表的实现 

1 .搭建链表基础

带头双向循环链表需要三个变量,两个存放指向前后节点的指针,另一个存放数据

// 带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{LTDataType data;//存放数据struct ListNode* next;//指向下一个节点struct ListNode* prev;//指向上一个节点
}ListNode;

2.从内存中开辟一个节点

使用malloc函数开辟节点

//从内存中开辟一个节点
ListNode* BuyNode(LTDataType x)
{ListNode* buynode = (ListNode*)malloc(sizeof(struct ListNode));if (buynode == NULL)//开辟失败{perror("malloc fail");}buynode->data = x;buynode->next = NULL;buynode->prev = NULL;}

 

3. 创建返回链表的头结点
 

开始时头节点两个指针都指向自己

//创建返回链表的头结点.
ListNode* ListCreate()
{ListNode* head = BuyNode(-1);//这里将头节点数据设为-1,任意数都可以head->next = head;head->prev = head;return head;
}

 

4.双向链表销毁

 malloc开辟空间后要使用free销毁内存空间,防止内存泄漏

// 双向链表销毁
void ListDestory(ListNode* pHead)
{assert(pHead);ListNode* cur = pHead->next;//头节点最后销毁while (cur != pHead)//循环一遍{ListNode* next = cur->next;//保存下一个节点,防止丢失free(cur);//销毁节点cur = next;}free(pHead);//销毁头节点
}

5.双向链表打印 

 

//双向链表打印
void ListPrint(ListNode* pHead)
{assert(pHead);if (pHead->next == pHead)//没有节点的情况,也可以不考虑{printf("pHead<=>pHead");return;}//有节点的情况printf("pHead<=>");//先打印pHeadListNode* cur = pHead->next;while (cur != pHead){printf("%d<=>", cur->data);cur = cur->next;}printf("pHead");//因为最后也是指向pHead
}

 

没有节点情况打印如下: 

6.双向链表尾插 

 

// 双向链表尾插
void ListPushBack(ListNode* pHead, LTDataType x)
{assert(pHead);//找尾节点,保存原来的尾//尾节点就是pHead->prevListNode* tail = pHead->prev;//开辟新节点ListNode* newnode = BuyNode(x);//尾插pHead->prev = newnode;newnode->next = pHead;newnode->prev = tail;tail->next = newnode;}

 

结果如下:

 

7.双向链表尾删

// 双向链表尾删
void ListPopBack(ListNode* pHead)
{assert(pHead);//没有节点不能尾删,头节点pHead不算if (pHead->next == pHead){printf("没有添加节点\n");return;}//找尾节点,以及尾节点的前一个节点ListNode* tail = pHead->prev;ListNode* tailprev = tail->prev;//尾删tailprev->next = pHead;pHead->prev = tailprev;free(tail);//释放内存空间
}

 结果如下:

8.双向链表头插 

// 双向链表头插
void ListPushFront(ListNode* pHead, LTDataType x)
{assert(pHead);//找头以外的第一个节点ListNode* headnext = pHead->next;//创建新节点ListNode* newnode = BuyNode(x);//头插pHead->next = newnode;newnode->next = headnext;newnode->prev = pHead;headnext->prev = newnode;
}

 

结果如下:

9.双向链表头删 

 

// 双向链表头删
void ListPopFront(ListNode* pHead)
{assert(pHead);//判断有没有节点,头节点pHead除外if (pHead->next == pHead){printf("没有添加节点\n");return;}//有节点//找头节点以及头节点的下一个节点ListNode* head = pHead->next;ListNode* headnext = head->next;//头删pHead->next = headnext;headnext->prev = pHead;free(head);//释放内存空间
}

 

 结果如下:

 

10.双向链表查找

// 双向链表查找
ListNode* ListFind(ListNode* pHead, LTDataType x)
{assert(pHead);//判断有无节点if (pHead->next == pHead){printf("没有添加节点\n");return;}ListNode* cur = pHead->next;//遍历查找while (cur){if (cur->data == x){return cur;//找到返回地址}cur = cur->next;}
}

结果如下:

11.双向链表在pos的前面进行插入 

在pos位置前面插入原理和头插尾插相似

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x)
{assert(pos);//找到pos前一个节点ListNode* posprev = pos->prev;//创建新节点ListNode* newnode = BuyNode(x);//在pos前插入posprev->next = newnode;newnode->next = pos;newnode->prev = posprev;pos->prev = newnode;}

结果如下:

 

12.双向链表删除pos位置的节点 

在pos位置删除原理和头删尾删相似

// 双向链表删除pos位置的节点
void ListErase(ListNode* pos)
{assert(pos);//找到pos前一个节点ListNode* posprev = pos->prev;//找打pos后一个节点ListNode* posnext = pos->next;//删除pos位置节点posprev->next = posnext;posnext->prev = posprev;free(pos);//释放内存空间}

结果如下:

三、💫💫拓展

思考:在pos之前插入与头插尾插是否有关?

           在pos位置删除与头删尾删是否相似?

 

我们发现pos位置前插入函数代码似乎可以复用在头插尾插;

pos位置删除函数代码似乎可以复用在头删尾删;

下面我们一起来实现

1.尾插头插 

//尾插
void ListPushBack(ListNode* pHead, LTDataType x)
{assert(pHead);//找尾节点,保存原来的尾//尾节点就是pHead->prev//ListNode* tail = pHead->prev;开辟新节点//ListNode* newnode = BuyNode(x);尾插//pHead->prev = newnode;//newnode->next = pHead;//newnode->prev = tail;//tail->next = newnode;ListInsert(pHead, x);}//头插
void ListPushFront(ListNode* pHead, LTDataType x)
{assert(pHead);//找头以外的第一个节点//ListNode* headnext = pHead->next;创建新节点//ListNode* newnode = BuyNode(x);头插//pHead->next = newnode;//newnode->next = headnext;//newnode->prev = pHead;//headnext->prev = newnode;ListInsert(pHead->next, x);}

2.尾删,头删

 

// 双向链表尾删
void ListPopBack(ListNode* pHead)
{assert(pHead);//没有节点不能尾删,头节点pHead不算if (pHead->next == pHead){printf("没有添加节点\n");return;}找尾节点,以及尾节点的前一个节点//ListNode* tail = pHead->prev;//ListNode* tailprev = tail->prev;尾删//tailprev->next = pHead;//pHead->prev = tailprev;//free(tail);//释放内存空间ListErase(pHead->prev);
}// 双向链表头删
void ListPopFront(ListNode* pHead)
{assert(pHead);//判断有没有节点,头节点pHead除外if (pHead->next == pHead){printf("没有添加节点\n");return;}有节点找头节点以及头节点的下一个节点//ListNode* head = pHead->next;//ListNode* headnext = head->next;头删//pHead->next = headnext;//headnext->prev = pHead;//free(head);//释放内存空间ListErase(pHead->next);
}

 

 运行结果依然不受影响:

 

四、🎉🎉结言 

        我们通过上面的学习发现,相似的代码的重复利用可以大大减少我们写代码的时间与精力,提高我们工作学习的效率;双向链表尽管结构较单链表复杂,但其实现却比单链表简单得多,相信大家对此都深有体会,此外数据结构的题目我们可以通过画图来很好的获得思路与接替步骤,以上就是带头双向循环链表的相关知识啦~完结撒花~🎉🎉🌹🌹🌹

这篇关于数据结构——lesson4带头双向循环链表实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760078

相关文章

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘