随机访问文件RandomAccessFile 与 内存映射文件MappedByteBuffer

本文主要是介绍随机访问文件RandomAccessFile 与 内存映射文件MappedByteBuffer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RandomAccessFile

RandomAccessFile是用来访问那些保存数据记录的文件的,你就可以用seek( )方法来访问记录,并进行读写了。这些记录的大小不必相同;但是其大小和位置必须是可知的。但是该类仅限于操作文件。

RandomAccessFile不属于InputStream和OutputStream类系的。实际上,除了实现DataInput和DataOutput接口之外(DataInputStream和DataOutputStream也实现了这两个接口),它和这两个类系毫不相干,甚至不使用InputStream和OutputStream类中已经存在的任何功能;它是一个完全独立的类,所有方法(绝大多数都只属于它自己)都是从零开始写的。这可能是因为RandomAccessFile能在文件里面前后移动,所以它的行为与其它的I/O类有些根本性的不同。总而言之,它是一个直接继承Object的,独立的类。

基本上,RandomAccessFile的工作方式是,把DataInputStream和DataOutputStream结合起来,再加上它自己的一些方法,比如定位用的getFilePointer( ),在文件里移动用的seek( ),以及判断文件大小的length( )、skipBytes()跳过多少字节数。此外,它的构造函数还要一个表示以只读方式("r"),还是以读写方式("rw")打开文件的参数 (和C的fopen( )一模一样)。它不支持只写文件。

只有RandomAccessFile才有seek搜寻方法,而这个方法也只适用于文件。BufferedInputStream有一个mark( )方法,你可以用它来设定标记(把结果保存在一个内部变量里),然后再调用reset( )返回这个位置,但是它的功能太弱了,而且也不怎么实用。

RandomAccessFile的绝大多数功能,但不是全部,已经被JDK 1.4的nio的"内存映射文件(memory-mapped files)"给取代了,你该考虑一下是不是用"内存映射文件"来代替RandomAccessFile了。
Java代码
import java.io.IOException;
import java.io.RandomAccessFile;

public class TestRandomAccessFile {
public static void main(String[] args) throws IOException {
[color=red]RandomAccessFile rf = new RandomAccessFile("rtest.dat", "rw"); [/color]
for (int i = 0; i < 10; i++) {
//写入基本类型double数据
rf.writeDouble(i * 1.414);
}
rf.close();
rf = new RandomAccessFile("rtest.dat", "rw");
//直接将文件指针移到第5个double数据后面
rf.seek(5 * 8);
//覆盖第6个double数据
rf.writeDouble(47.0001);
rf.close();
rf = new RandomAccessFile("rtest.dat", "r");
for (int i = 0; i < 10; i++) {
System.out.println("Value " + i + ": " + rf.readDouble());
}
rf.close();
}
}
内存映射文件

内存映射文件能让你创建和修改那些因为太大而无法放入内存的文件。有了内存映射文件,你就可以认为文件已经全部读进了内存,然后把它当成一个非常大的数组来访问。这种解决办法能大大简化修改文件的代码。
fileChannel.map(FileChannel.MapMode mode, long position, long size)将此通道的文件区域直接映射到内存中。注意,你必须指明,它是从文件的哪个位置开始映射的,映射的范围又有多大;也就是说,它还可以映射一个大文件的某个小片断。

MappedByteBuffer是ByteBuffer的子类,因此它具备了ByteBuffer的所有方法,但新添了force()将缓冲区的内容强制刷新到存储设备中去、load()将存储设备中的数据加载到内存中、isLoaded()位置内存中的数据是否与存储设置上同步。这里只简单地演示了一下put()和get()方法,除此之外,你还可以使用asCharBuffer( )之类的方法得到相应基本类型数据的缓冲视图后,可以方便的读写基本类型数据。
Java代码
import java.io.RandomAccessFile;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;

public class LargeMappedFiles {
static int length = 0x8000000; // 128 Mb

public static void main(String[] args) throws Exception {
[color=red] // 为了以可读可写的方式打开文件,这里使用RandomAccessFile来创建文件。
FileChannel fc = new RandomAccessFile("test.dat", "rw").getChannel();
//注意,文件通道的可读可写要建立在文件流本身可读写的基础之上
MappedByteBuffer out = fc.map(FileChannel.MapMode.READ_WRITE, 0, length); [/color]
//写128M的内容
for (int i = 0; i < length; i++) {
out.put((byte) 'x');
}
System.out.println("Finished writing");
//读取文件中间6个字节内容
for (int i = length / 2; i < length / 2 + 6; i++) {
System.out.print((char) out.get(i));
}
fc.close();
}
}

尽管映射写似乎要用到FileOutputStream,但是映射文件中的所有输出 必须使用RandomAccessFile,但如果只需要读时可以使用FileInputStream,写映射文件时一定要使用随机访问文件,可能写时要读的原因吧。

该程序创建了一个128Mb的文件,如果一次性读到内存可能导致内存溢出,但这里访问好像只是一瞬间的事,这是因为,真正调入内存的只是其中的一小部分,其余部分则被放在交换文件上。这样你就可以很方便地修改超大型的文件了(最大可以到2 GB)。注意,Java是调用操作系统的"文件映射机制"来提升性能的。

RandomAccessFile类的应用 收藏
/*
* 程序功能:演示了RandomAccessFile类的操作,同时实现了一个文件复制操作。
*/
package com.lwj.demo;

import java.io.*;

public class RandomAccessFileDemo {
public static void main(String[] args) throws Exception {
RandomAccessFile file = new RandomAccessFile("file", "rw");
// 以下向file文件中写数据
file.writeInt(20);// 占4个字节
file.writeDouble(8.236598);// 占8个字节
file.writeUTF("这是一个UTF字符串");// 这个长度写在当前文件指针的前两个字节处,可用readShort()读取
file.writeBoolean(true);// 占1个字节
file.writeShort(395);// 占2个字节
file.writeLong(2325451l);// 占8个字节
file.writeUTF("又是一个UTF字符串");
file.writeFloat(35.5f);// 占4个字节
file.writeChar('a');// 占2个字节

file.seek(0);// 把文件指针位置设置到文件起始处

// 以下从file文件中读数据,要注意文件指针的位置
System.out.println("——————从file文件指定位置读数据——————");
System.out.println(file.readInt());
System.out.println(file.readDouble());
System.out.println(file.readUTF());

file.skipBytes(3);// 将文件指针跳过3个字节,本例中即跳过了一个boolean值和short值。
System.out.println(file.readLong());

file.skipBytes(file.readShort()); // 跳过文件中“又是一个UTF字符串”所占字节,注意readShort()方法会移动文件指针,所以不用加2。
System.out.println(file.readFloat());

//以下演示文件复制操作
System.out.println("——————文件复制(从file到fileCopy)——————");
file.seek(0);
RandomAccessFile fileCopy=new RandomAccessFile("fileCopy","rw");
int len=(int)file.length();//取得文件长度(字节数)
byte[] b=new byte[len];
file.readFully(b);
fileCopy.write(b);
System.out.println("复制完成!");
}
}

运行结果(同时生成相应的文件):

——————从file文件指定位置读数据——————
20
8.236598
这是一个UTF字符串
2325451
35.5
——————文件复制(从file到fileCopy)——————

这篇关于随机访问文件RandomAccessFile 与 内存映射文件MappedByteBuffer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759783

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言 当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

string字符会调用new分配堆内存吗

gcc的string默认大小是32个字节,字符串小于等于15直接保存在栈上,超过之后才会使用new分配。

PHP内存泄漏问题解析

内存泄漏 内存泄漏指的是在程序运行过程中申请了内存,但是在使用完成后没有及时释放的现象, 对于普通运行时间较短的程序来说可能问题不会那么明显,但是对于长时间运行的程序, 比如Web服务器,后台进程等就比较明显了,随着系统运行占用的内存会持续上升, 可能会因为占用内存过高而崩溃,或被系统杀掉 PHP的内存泄漏 PHP属于高级语言,语言级别并没有内存的概念,在使用过程中完全不需要主动申请或释放内