2021NIPS | 即插即用,标准化注意力机制NAM

2024-02-29 17:20

本文主要是介绍2021NIPS | 即插即用,标准化注意力机制NAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NAM: Normalization-based Attention Module 

paper:https://arxiv.org/pdf/2111.12419.pdf

code:https://github.com/Christian-lyc/NAM

摘要 

        注意机制是近年来人们普遍关注的研究兴趣之一。它帮助深度神经网络抑制较不显著的像素或通道。以往的许多研究都集中于通过注意力操作来捕捉显著特征。这些方法成功地利用了不同特征维度上的互信息。然而,它们没有考虑到权重的贡献因素,而权重能够进一步抑制不重要的信道或像素。本文利用权重的贡献因素来改善注意机制。使用一个批处理(BN)归一化的缩放因子,它使用标准偏差来表示权重的重要性。这可以避免添加在SE、BAM和CBAM中使用的全连接和卷积层。因此,提出了一种有效的注意机制——基于标准化的注意模块(NAM)。

论文背景

        许多先前的工作试图通过抑制无关紧要的权值来改善神经网络的性能。Squeeze-and-Excitation Networks(SENet) 将空间信息整合到通道特征响应中,并使用两个多层感知器(MLP)层计算相应的注意。Bottleneck Attention Module(BAM)并行构建分离的空间子模块和通道子模块,它们可以嵌入到每个Bottleneck  Block中。Convolutional Block Attention Module(CBAM)提供了一种顺序嵌入通道和空间注意力子模块的解决方案。为了避免忽视跨维度的相互作用,Triplet Attention Module (TAM) 通过旋转特征图考虑维度相关性。然而,这些工作忽略了来自训练中调整权重的信息。因此,本文的目标是通过利用训练模型权重的方差度量来突出显著特征。

论文主要思想

        本文提出NAM作为一种高效和轻量级的注意机制。采用了来自CBAM的模块。并重新设计通道和空间注意子模块。然后,在每个网络块的末端嵌入一个NAM模块。对于残差网络,它被嵌入在残余结构的末端。对于信道注意子模块,使用了批归一化(BN)的缩放因子。尺度因子测量了信道的方差,并表明了它们的重要性。

其中\mu _{B}为均值,\sigma ^{2}_{B}为方差;\gamma\beta是可训练的仿射变换参数(尺度和位移)。 

通道注意力子模块如图1所示,其中M_{c}表示输出特征。\gamma是每个通道的比例因子,权值为W_{\gamma }=\gamma_{i}/\sum_{j=0}\, \: \gamma_{j}。这里还将BN的比例因子应用于空间维度,来衡量空间特征的重要性。

对应的空间注意力子模块如图2所示,其中输出记为M_{s}\lambda为比例因子,权值为W_{\lambda }=\lambda {i}/\sum_{j=0}\, \: \lambda _{j}

keras实现 

以下是根据论文和pytorch源码实现的keras版本(支持Tensorflow1.x)。

from keras.layers import Layer
import numpy as np
import keras.backend as Kclass NAM(Layer):def __init__(self, **kwargs):super(NAM, self).__init__()self.bn = BatchNormalization()def build(self, input_shape):self.bn.build(input_shape)self._trainable_weights += self.bn._trainable_weightssuper(NAM, self).build(input_shape)def call(self, x):residual = xx = self.bn(x)weights = np.abs(self.bn.gamma) / np.sum(np.abs(self.bn.gamma))x = x * weightsx = K.sigmoid(x) * residualreturn x

声明:本内容来源网络,版权属于原作者,图片来源原论文。如有侵权,联系删除。

创作不易,欢迎大家点赞评论收藏关注!(想看更多最新的注意力机制文献欢迎关注浏览我的博客)

这篇关于2021NIPS | 即插即用,标准化注意力机制NAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759475

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,