2021NIPS | 即插即用,标准化注意力机制NAM

2024-02-29 17:20

本文主要是介绍2021NIPS | 即插即用,标准化注意力机制NAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NAM: Normalization-based Attention Module 

paper:https://arxiv.org/pdf/2111.12419.pdf

code:https://github.com/Christian-lyc/NAM

摘要 

        注意机制是近年来人们普遍关注的研究兴趣之一。它帮助深度神经网络抑制较不显著的像素或通道。以往的许多研究都集中于通过注意力操作来捕捉显著特征。这些方法成功地利用了不同特征维度上的互信息。然而,它们没有考虑到权重的贡献因素,而权重能够进一步抑制不重要的信道或像素。本文利用权重的贡献因素来改善注意机制。使用一个批处理(BN)归一化的缩放因子,它使用标准偏差来表示权重的重要性。这可以避免添加在SE、BAM和CBAM中使用的全连接和卷积层。因此,提出了一种有效的注意机制——基于标准化的注意模块(NAM)。

论文背景

        许多先前的工作试图通过抑制无关紧要的权值来改善神经网络的性能。Squeeze-and-Excitation Networks(SENet) 将空间信息整合到通道特征响应中,并使用两个多层感知器(MLP)层计算相应的注意。Bottleneck Attention Module(BAM)并行构建分离的空间子模块和通道子模块,它们可以嵌入到每个Bottleneck  Block中。Convolutional Block Attention Module(CBAM)提供了一种顺序嵌入通道和空间注意力子模块的解决方案。为了避免忽视跨维度的相互作用,Triplet Attention Module (TAM) 通过旋转特征图考虑维度相关性。然而,这些工作忽略了来自训练中调整权重的信息。因此,本文的目标是通过利用训练模型权重的方差度量来突出显著特征。

论文主要思想

        本文提出NAM作为一种高效和轻量级的注意机制。采用了来自CBAM的模块。并重新设计通道和空间注意子模块。然后,在每个网络块的末端嵌入一个NAM模块。对于残差网络,它被嵌入在残余结构的末端。对于信道注意子模块,使用了批归一化(BN)的缩放因子。尺度因子测量了信道的方差,并表明了它们的重要性。

其中\mu _{B}为均值,\sigma ^{2}_{B}为方差;\gamma\beta是可训练的仿射变换参数(尺度和位移)。 

通道注意力子模块如图1所示,其中M_{c}表示输出特征。\gamma是每个通道的比例因子,权值为W_{\gamma }=\gamma_{i}/\sum_{j=0}\, \: \gamma_{j}。这里还将BN的比例因子应用于空间维度,来衡量空间特征的重要性。

对应的空间注意力子模块如图2所示,其中输出记为M_{s}\lambda为比例因子,权值为W_{\lambda }=\lambda {i}/\sum_{j=0}\, \: \lambda _{j}

keras实现 

以下是根据论文和pytorch源码实现的keras版本(支持Tensorflow1.x)。

from keras.layers import Layer
import numpy as np
import keras.backend as Kclass NAM(Layer):def __init__(self, **kwargs):super(NAM, self).__init__()self.bn = BatchNormalization()def build(self, input_shape):self.bn.build(input_shape)self._trainable_weights += self.bn._trainable_weightssuper(NAM, self).build(input_shape)def call(self, x):residual = xx = self.bn(x)weights = np.abs(self.bn.gamma) / np.sum(np.abs(self.bn.gamma))x = x * weightsx = K.sigmoid(x) * residualreturn x

声明:本内容来源网络,版权属于原作者,图片来源原论文。如有侵权,联系删除。

创作不易,欢迎大家点赞评论收藏关注!(想看更多最新的注意力机制文献欢迎关注浏览我的博客)

这篇关于2021NIPS | 即插即用,标准化注意力机制NAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759475

相关文章

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

详解Spring中REQUIRED事务的回滚机制详解

《详解Spring中REQUIRED事务的回滚机制详解》在Spring的事务管理中,REQUIRED是最常用也是默认的事务传播属性,本文就来详细的介绍一下Spring中REQUIRED事务的回滚机制,... 目录1. REQUIRED 的定义2. REQUIRED 下的回滚机制2.1 异常触发回滚2.2 回

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析