【飞桨EasyDL】飞桨EasyDL发布的模型转换onnx(附工程代码)

2024-02-29 16:36

本文主要是介绍【飞桨EasyDL】飞桨EasyDL发布的模型转换onnx(附工程代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个愿意伫立在巨人肩膀上的农民......

 一、paddle转onnx转rknn环境搭建

        paddle转onnx和onnx转rknn两个环境可以分开搭建,也可以搭建在一起。这里选择分开搭建,先搭建paddle转onnx。

1.1、创建环境

        选择python3.8.13包进行创建环境

conda create --name paddle2rknn libprotobuf python==3.10

1.2、进入环境

        命令如下:

conda activate paddle2rknn

1.3、RKNN-Toolkit2工具安装

        RKNN-Toolkit2是为用户提供在 PC、Rockchip NPU 平台上进行模型转换、推理和性能评估的开发套件,RKNN-Toolkit2适用于RK3566、RK3568、RK3588/RK3588S、RV1103、RV1106等型号的芯片。RKNN-Toolkit2的适配文件可以从下方链接获取:

https://download.csdn.net/download/weixin_41809117/88879019?spm=1001.2014.3001.5503icon-default.png?t=N7T8https://download.csdn.net/download/weixin_41809117/88879019?spm=1001.2014.3001.5503

        下载解压后这里RKNN-Toolkit2的根目录为./rknn-toolkit2/packages/。目前提供两种方式安装RKNN-Toolkit2:一是通过Python包安装与管理工具pip进行安装;二是运行带完整RKNN-Toolkit2工具包的docker镜像。本文采用第一种方式。

        切换到RKNN-Toolkit2根目录:

cd /home/ub/下载/rknn-toolkit2/rknn-toolkit2/packages/

        安装依赖,因为我们环境的python版本是3.10.0,所以这里执行:

pip install -r requirements_cp310-1.6.0.txt

        安装RKNN-Toolkit2:

pip install rknn_toolkit2-1.6.0+81f21f4d-cp310-cp310-linux_x86_64.whl

1.4、paddle2onnx工具安装

        查看paddle2onnx可安装版本:

pip index versions paddle2onnx

        默认安装的就是最新版本,这里指定1.0.8版本,否则会因为onnx版本版本太高,与RKNN-Toolkit2不兼容:

pip install paddle2onnx==1.0.8

1.5、解决相关依赖问题

        到此,paddle转onnx转rknn环境基本搭建完成,但是还要解决一下包依赖的问题。

        安装pip依赖查看工具:

pip install pipdeptree

        查看依赖关系:

pipdeptree -p paddle2onnx

        根据终端打印的内容进行包的安装和版本更换。

pip install /*包名*/==/*版本号*/

二、模型转换

        Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括 TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。Paddle2ONNX包可通过如下连接下载:

https://download.csdn.net/download/weixin_41809117/88879464?spm=1001.2014.3001.5503icon-default.png?t=N7T8https://download.csdn.net/download/weixin_41809117/88879464?spm=1001.2014.3001.5503

2.1、获取PaddlePaddle部署模型

        Paddle2ONNX 在导出模型时,需要传入部署模型格式,包括两个文件

        a).model_name.pdmodel: 表示模型结构

        b).model_name.pdiparams: 表示模型参数 [注意] 这里需要注意,两个文件其中参数文件后辍为 .pdiparams,如你的参数文件后辍是 .pdparams,那说明你的参数是训练过程中保存的,当前还不是部署模型格式。 部署模型的导出可以参照各个模型套件的导出模型文档。

2.2、命令行模型转换

        指令paddle2onnx相关参数如下表:

参数参数说明
--model_dir配置包含 Paddle 模型的目录路径
--model_filename[可选] 配置位于 --model_dir 下存储网络结构的文件名
--params_filename[可选] 配置位于 --model_dir 下存储模型参数的文件名称
--save_file指定转换后的模型保存目录路径
--opset_version[可选] 配置转换为 ONNX 的 OpSet 版本,目前支持 7~16 等多个版本,默认为 9
--enable_dev_version[可选] 是否使用新版本 Paddle2ONNX(推荐使用),默认为 True
--enable_onnx_checker[可选] 配置是否检查导出为 ONNX 模型的正确性, 建议打开此开关, 默认为 False
--enable_auto_update_opset[可选] 是否开启 opset version 自动升级功能,当低版本 opset 无法转换时,自动选择更高版本的 opset进行转换, 默认为 True
--deploy_backend[可选] 量化模型部署的推理引擎,支持 onnxruntime、tensorrt 或 others,当选择 others 时,所有的量化信息存储于 max_range.txt 文件中,默认为 onnxruntime
--save_calibration_file[可选] TensorRT 8.X版本部署量化模型需要读取的 cache 文件的保存路径,默认为 calibration.cache
--version[可选] 查看 paddle2onnx 版本
--external_filename[可选] 当导出的 ONNX 模型大于 2G 时,需要设置 external data 的存储路径,推荐设置为:external_data
--export_fp16_model[可选] 是否将导出的 ONNX 的模型转换为 FP16 格式,并用 ONNXRuntime-GPU 加速推理,默认为 False
--custom_ops

[可选] 将 Paddle OP 导出为 ONNX 的 Custom OP。

例如:--custom_ops '{"paddle_op":"onnx_op"},默认为 {}

        模型转换指令:

paddle2onnx --model_dir models --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file saveonnx/model.onnx --enable_onnx_checker True

        转换结果在./Paddle2ONNX/saveonnx/model.onnx

这篇关于【飞桨EasyDL】飞桨EasyDL发布的模型转换onnx(附工程代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759388

相关文章

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析