[python]随机选取的方式——random.choices()

2024-02-29 13:36

本文主要是介绍[python]随机选取的方式——random.choices(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于随机选取的函数。

1. 列表随机选取

1.1. 随机等概率选取一个结果

首先我们来想象一下,现在有一个列表,要在其中随机选取一个数字,比如:

a = [1,2,3,4,5]

这里我们需要用到一种比较简单的随机选取方式,即random.choices

代码如下:

import random
a = [1,2,3,4,5]
num_list = random.choices(a)
print(num_list)

执行效果如下:

 1.2. 随机等概率选取多个结果

注意到random.choices()的返回值默认是一个列表(即使其默认选取一个值)

如果只要一个值的话,可以再加一步处理:

num = random.choices(a)[0]  # 选取列表的第一个元素

但是,如果需要选取多个结果,则可以使用参数k指定

import random
a = [1,2,3,4,5]
num_list = random.choices(a, k=2)  # 选取两个
print(num_list)

结果如下:

1.3. 随机非等概率选取结果

有的时候,我们希望选取的概率并不是完全一样的,比如说,我希望a中,有1/15的概率选到1,2/15的概率选到2,以此类推,这时就需要指定参数weights设定权重

即:

import random
from collections import Counter
a = [1,2,3,4,5]
# 使用weights指定,weights接受一个列表作为参数
num_list = random.choices(a, k=1500, weights=[i/sum(a) for i in a])
# 统计每一项被选取的次数
counts = Counter(num_list)
print("1:", counts[1])
print("2:", counts[2])
print("3:", counts[3])
print("4:", counts[4])
print("5:", counts[5])

执行结果如下:

2. 字典随机选取

2.1. 随机等概率选取

随机等概率选取字典的key,其方式与列表类似,只不过需要一个list()

import random
b = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
# 在b的key中选取一个
num_list = random.choices(list(b.keys()))
print(num_list)       

其结果为:

 2.2. 按照value的概率选取

既然是字典,我们也会想到使用value指定概率,其实也比较简单,使用到了weights参数

import random
from collections import Counter
b = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
num_list = random.choices(list(b.keys()), k=1500, weights=list(b.values()))
# 统计每一项被选取的次数
counts = Counter(num_list)
print("a:", counts['a'])
print("b:", counts['b'])
print("c:", counts['c'])
print("d:", counts['d'])
print("e:", counts['e'])

执行结果为:

这篇关于[python]随机选取的方式——random.choices()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758979

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结