能在手机上运行,仅仅0.5B大小的小语言模型MobiLlama

2024-02-29 06:44

本文主要是介绍能在手机上运行,仅仅0.5B大小的小语言模型MobiLlama,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


aca4dd793755ee5ce30eb13be6260763.jpeg

模型介绍

该模型基于LLaMA-7B架构设计,旨在能够在边缘设备上高效运行,无需将数据发送到远程服务器或云端处理。如智能手机、平板电脑、智能手表等。

MobiLlama模型虽然体积小、对资源的需求低,但仍能提供高精度的语言理解和生成能力。

项目还提供了在安卓上运行MobiLlama模型的方法和安装包下载链接。mbzuaiac-my.sharepoint.com/:f:/g/personal…

主要能力

1、高精度的语言理解与生成:即便参数规模相对较小(0.5亿参数),MobiLlama也能高效处理自然语言理解和生成任务,如文本摘要、问答系统、自然语言推理等。

2、轻量级设计:通过优化模型架构和采用参数共享技术,MobiLlama实现了模型大小和计算资源需求的显著减少,使其适合在计算能力有限的设备上运行。

3、资源效率高:MobiLlama在设计时考虑了能效和内存使用效率,使其在执行任务时消耗更少的电力和存储空间,适合长时间运行在移动设备上。

4、适应性强:由于其轻量级和高效的特性,MobiLlama可以轻松集成到各种应用中,从智能助手到语言翻译工具,都能从其快速、精确的处理能力中受益。

5、全透明:MobiLlama项目开源,提供了模型的训练数据、代码和训练过程的详细信息,使其他研究者和开发者可以完全了解模型的工作原理,有助于促进技术的进步和应用的开发。

模型版本

MobiLlama项目提供了不同配置的模型版本,包括0.5B、0.8B、1B及其聊天版本的模型。

0.5B:这个版本的模型有0.5亿参数,是设计中最轻量级的一个,旨在提供较高的效率和速度,同时保持良好的性能,特别适合在资源受限的设备上使用。

0.8B:0.8亿参数的模型在0.5B的基础上增加了参数,以改进模型的性能和理解能力,适合于需要更复杂处理能力的场景。

1B:1亿参数的模型进一步增强了模型的能力,能够处理更复杂的语言理解和生成任务,适用于对性能要求更高的应用。

数据集

项目使用了预处理过的Amber数据集,总计约1.2万亿token,数据来源包括Arxiv、Book、C4、Refined-Web、StarCoder、StackExchange和Wikipedia等,总大小约为8TB。

评估结果

基准测试性能

MobiLlama模型在包括HellaSwag、TruthfulQA、MMLU、ARC_C、CrowsPairs、PIQA、RACE、SIQA、WinoGrande等测试中的性能表现,与其他模型进行了比较。在这些基准测试中,MobiLlama表现出色,尤其是在0.5B和0.8B配置下,展现了其高效处理复杂语言任务的能力。具体的评估结果如下:

MobiLlama (0.5B):在多项任务中取得了优异的成绩,平均得分达到46.00,突出显示了模型的高效率和准确性。
MobiLlama (0.8B):进一步提升了性能,平均得分达到46.67,表明了通过增加模型规模可以进一步提升性能。

比较分析

与其他模型相比,如GPT-NEO、TinyStarCoder、Cerebras-GPT等,MobiLlama在相同或更小的参数规模下,能够实现更高的准确度和效率。这些结果凸显了MobiLlama在设计上的优势,即通过参数共享和模型优化,实现了在资源有限的设备上运行高性能模型的目标。

具体性能对比

GPT-NEO (0.15B):平均得分为40.93。
TinyStarCoder (0.17B):平均得分为37.86。
Cerebras-GPT (0.26B):平均得分为40.69。

MobiLlama的性能优于这些模型,展现了其作为小型语言模型的竞争力和潜力。

模型下载:huggingface.co/MBZUAI

GitHub:https://github.com/mbzuai-oryx/MobiLlama

论文:arxiv.org/abs/2402.16840

在线体验:845b645234785da51b.gradio.live

这篇关于能在手机上运行,仅仅0.5B大小的小语言模型MobiLlama的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757905

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU