SRIO--IP讲解及环回测试

2024-02-29 03:44
文章标签 讲解 ip 测试 环回 srio

本文主要是介绍SRIO--IP讲解及环回测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、IP例化文件
  • 二、SRIO环回工程搭建
  • 三、板级验证
    • 3.1 本实验的板级验证环节,主要验证以下几个目标:
    • 3.2 系统所需硬件
    • 3.3 ILA波形


前言

本章将为大家介绍 “Serial RapidIO Gen2 ”IP 的使用以及配置方法。“Serial RapidIO Gen2 ”IP 在进行数据传输时需要按照 Rapidio 协议进行数据传输。Rapidio 协议组成的基本要素是包和控制符号:包是基于各种协议的传输数据内容,控制符号则用于控制物理层数据交互的方式。本章实验的方案是产生一组累加的测试数据,测试数据在经过光模块后再对数据进行接收,将发送和接收的数据进行对比,从而测试我们的开发板是否支持“Serial RapidIO Gen2 ”IP 数据的收发。


提示:任何文章不要过度深思!万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」 ;不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人 。怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」

一、IP例化文件

srio_gen2_0 your_instance_name (.log_clk_in(log_clk_in),                                        // input wire log_clk_in.buf_rst_in(buf_rst_in),                                        // input wire buf_rst_in.log_rst_in(log_rst_in),                                        // input wire log_rst_in.gt_pcs_rst_in(gt_pcs_rst_in),                                  // input wire gt_pcs_rst_in.gt_pcs_clk_in(gt_pcs_clk_in),                                  // input wire gt_pcs_clk_in.cfg_rst_in(cfg_rst_in),                                        // input wire cfg_rst_in.deviceid(deviceid),                                            // output wire [15 : 0] deviceid.port_decode_error(port_decode_error),                          // output wire port_decode_error.s_axis_ireq_tvalid(s_axis_ireq_tvalid),                        // input wire s_axis_ireq_tvalid.s_axis_ireq_tready(s_axis_ireq_tready),                        // output wire s_axis_ireq_tready.s_axis_ireq_tlast(s_axis_ireq_tlast),                          // input wire s_axis_ireq_tlast.s_axis_ireq_tdata(s_axis_ireq_tdata),                          // input wire [63 : 0] s_axis_ireq_tdata.s_axis_ireq_tkeep(s_axis_ireq_tkeep),                          // input wire [7 : 0] s_axis_ireq_tkeep.s_axis_ireq_tuser(s_axis_ireq_tuser),                          // input wire [31 : 0] s_axis_ireq_tuser.m_axis_iresp_tvalid(m_axis_iresp_tvalid),                      // output wire m_axis_iresp_tvalid.m_axis_iresp_tready(m_axis_iresp_tready),                      // input wire m_axis_iresp_tready.m_axis_iresp_tlast(m_axis_iresp_tlast),                        // output wire m_axis_iresp_tlast.m_axis_iresp_tdata(m_axis_iresp_tdata),                        // output wire [63 : 0] m_axis_iresp_tdata.m_axis_iresp_tkeep(m_axis_iresp_tkeep),                        // output wire [7 : 0] m_axis_iresp_tkeep.m_axis_iresp_tuser(m_axis_iresp_tuser),                        // output wire [31 : 0] m_axis_iresp_tuser.m_axis_treq_tvalid(m_axis_treq_tvalid),                        // output wire m_axis_treq_tvalid.m_axis_treq_tready(m_axis_treq_tready),                        // input wire m_axis_treq_tready.m_axis_treq_tlast(m_axis_treq_tlast),                          // output wire m_axis_treq_tlast.m_axis_treq_tdata(m_axis_treq_tdata),                          // output wire [63 : 0] m_axis_treq_tdata.m_axis_treq_tkeep(m_axis_treq_tkeep),                          // output wire [7 : 0] m_axis_treq_tkeep.m_axis_treq_tuser(m_axis_treq_tuser),                          // output wire [31 : 0] m_axis_treq_tuser.s_axis_tresp_tvalid(s_axis_tresp_tvalid),                      // input wire s_axis_tresp_tvalid.s_axis_tresp_tready(s_axis_tresp_tready),                      // output wire s_axis_tresp_tready.s_axis_tresp_tlast(s_axis_tresp_tlast),                        // input wire s_axis_tresp_tlast.s_axis_tresp_tdata(s_axis_tresp_tdata),                        // input wire [63 : 0] s_axis_tresp_tdata.s_axis_tresp_tkeep(s_axis_tresp_tkeep),                        // input wire [7 : 0] s_axis_tresp_tkeep.s_axis_tresp_tuser(s_axis_tresp_tuser),                        // input wire [31 : 0] s_axis_tresp_tuser.s_axi_maintr_rst(s_axi_maintr_rst),                            // input wire s_axi_maintr_rst.s_axi_maintr_awvalid(s_axi_maintr_awvalid),                    // input wire s_axi_maintr_awvalid.s_axi_maintr_awready(s_axi_maintr_awready),                    // output wire s_axi_maintr_awready.s_axi_maintr_awaddr(s_axi_maintr_awaddr),                      // input wire [31 : 0] s_axi_maintr_awaddr.s_axi_maintr_wvalid(s_axi_maintr_wvalid),                      // input wire s_axi_maintr_wvalid.s_axi_maintr_wready(s_axi_maintr_wready),                      // output wire s_axi_maintr_wready.s_axi_maintr_wdata(s_axi_maintr_wdata),                        // input wire [31 : 0] s_axi_maintr_wdata.s_axi_maintr_bvalid(s_axi_maintr_bvalid),                      // output wire s_axi_maintr_bvalid.s_axi_maintr_bready(s_axi_maintr_bready),                      // input wire s_axi_maintr_bready.s_axi_maintr_bresp(s_axi_maintr_bresp),                        // output wire [1 : 0] s_axi_maintr_bresp.s_axi_maintr_arvalid(s_axi_maintr_arvalid),                    // input wire s_axi_maintr_arvalid.s_axi_maintr_arready(s_axi_maintr_arready),                    // output wire s_axi_maintr_arready.s_axi_maintr_araddr(s_axi_maintr_araddr),                      // input wire [31 : 0] s_axi_maintr_araddr.s_axi_maintr_rvalid(s_axi_maintr_rvalid),                      // output wire s_axi_maintr_rvalid.s_axi_maintr_rready(s_axi_maintr_rready),                      // input wire s_axi_maintr_rready.s_axi_maintr_rdata(s_axi_maintr_rdata),                        // output wire [31 : 0] s_axi_maintr_rdata.s_axi_maintr_rresp(s_axi_maintr_rresp),                        // output wire [1 : 0] s_axi_maintr_rresp.gt_clk_in(gt_clk_in),                                          // input wire gt_clk_in.drpclk_in(drpclk_in),                                          // input wire drpclk_in.refclk_in(refclk_in),                                          // input wire refclk_in.buf_lcl_response_only_out(buf_lcl_response_only_out),          // output wire buf_lcl_response_only_out.buf_lcl_tx_flow_control_out(buf_lcl_tx_flow_control_out),      // output wire buf_lcl_tx_flow_control_out.idle2_selected(idle2_selected),                                // output wire idle2_selected.idle_selected(idle_selected),                                  // output wire idle_selected.buf_lcl_phy_buf_stat_out(buf_lcl_phy_buf_stat_out),            // output wire [5 : 0] buf_lcl_phy_buf_stat_out.phy_clk_in(phy_clk_in),                                        // input wire phy_clk_in.gt0_qpll_clk_in(gt0_qpll_clk_in),                              // input wire gt0_qpll_clk_in.gt0_qpll_out_refclk_in(gt0_qpll_out_refclk_in),                // input wire gt0_qpll_out_refclk_in.phy_rst_in(phy_rst_in),                                        // input wire phy_rst_in.

这篇关于SRIO--IP讲解及环回测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757483

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

MySQL连表查询之笛卡尔积查询的详细过程讲解

《MySQL连表查询之笛卡尔积查询的详细过程讲解》在使用MySQL或任何关系型数据库进行多表查询时,如果连接条件设置不当,就可能发生所谓的笛卡尔积现象,:本文主要介绍MySQL连表查询之笛卡尔积查... 目录一、笛卡尔积的数学本质二、mysql中的实现机制1. 显式语法2. 隐式语法3. 执行原理(以Nes

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源