【N皇后问题】【leetcode51】(Java)

2024-02-28 12:58
文章标签 java 问题 皇后 leetcode51

本文主要是介绍【N皇后问题】【leetcode51】(Java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【N皇后问题】【leetcode51】

问题描述

八皇后问题,一个古老而著名的问题,是回溯算法的典型案例。该问题由国际西洋棋棋手马克斯·贝瑟尔于 1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有 76 种方案。1854 年在柏林的象棋杂志上不同的作者发表了 40 种不同的解,后来有人用图论的方法解出 92 种结果。计算机发明后,有多种计算机语言可以编程解决此问题。
在这里插入图片描述

输出结果要求

输入: 4
输出: [[".Q..",  // 解法 1"...Q","Q...","..Q."],["..Q.",  // 解法 2"Q...","...Q",".Q.."]
]

解题思路

针对N皇后问题,若要求解出所有可能的解,这必须列举出N个皇后位置所有的可能组合。一种求解方式就是把N个皇后在棋盘中的所有位置的组合都列举出来,然后依次判断每一个组合会不会出现攻击。这种方法的时间复杂度 O(N^N),显然复杂度是相当高的。
为了能够简化时间复杂度,我们在按照一行一行的当时去放置N个皇后,每行都会放置一个皇后,并且该行放置皇后的位置最大为N;一旦本行的皇后确定了位置后,那么 她所在的行(row),列(col),左斜(hill),右斜(dale) 都不能再放皇后,这样,考虑下一行的皇后的位置时可能的位置就必须避开这些位置。
在这里插入图片描述
对于第一行,有N个位置可以放置皇后;
对于第二行,有N - 3个位置可以放置皇后;
在这里插入图片描述
因此,我们一行一行的放置皇后的位置,如果发现该行没有可以放置皇后的位置时,则回溯到上一行重新放置上一行的皇后的位置。这就是回溯算法。
实现
观察棋盘,一共有 N 个row, N 个col,2N - 1 个hill,2N - 1 个dale。因此,为了能够记录哪一行、列、斜不能放置皇后,引入数组 记录:

	int n;int[] rows; // 所在行是否有queenint[] hills;  // 左斜是否有queenint[] dales;  // 右斜是否有queenint[] queens; // 每列queen 放置的位置

判断 该位置 是否能放置皇后

    private boolean isAttack(int row, int col){int res = rows[col] + hills[row - col + 2 * n] + dales[row + col];return res == 0;}

放置皇后, 在位置(row,col)放置皇后后,需更新 rows, hill, dales数组

    private void placeQueen(int row, int col){queens[row] = col;rows[col] =  1;hills[row - col + 2 * n] = 1;dales[col + row] = 1;}

移走皇后,在位置(row,col)移走皇后后,需更新 rows, hill, dales数组

    private void removeQueen(int row, int col){queens[row] = 0;rows[col] = 0;hills[row - col + 2 * n] = 0;dales[col + row] = 0;}

所有位置都放置好后,生成所需要的字符串列表

    private void addSolution(){List<String> solution = new ArrayList<>();for(int i = 0; i < n; i ++){int col = queens[i];StringBuilder sb = new StringBuilder();for(int j = 0; j < col; j ++)sb.append(".");sb.append("Q");for(int j = col + 1; j < n; j ++)sb.append(".");solution.add(sb.toString());}output.add(solution);}

核心回溯算法

    private void backtrace(int row){for(int col = 0; col < n; col ++){if(isAttack(row, col)){placeQueen(row, col);if(row == n - 1)addSolution();elsebacktrace(row + 1);removeQueen(row, col);}}}

整体代码

class Solution {int[] rows; // 所在行是否有queenint[] hills;  // 左斜是否有queenint[] dales;  // 右斜是否有queenint n;int[] queens; // 每列queen 放置的位置List<List<String>> output;public List<List<String>> solveNQueens(int n){this.n = n;rows = new int[n];hills = new int[4*n - 1];dales = new int[2*n - 1];queens = new int[n];output = new ArrayList<>();backtrace(0);return output;}private boolean isAttack(int row, int col){int res = rows[col] + hills[row - col + 2 * n] + dales[row + col];return res == 0;}private void placeQueen(int row, int col){queens[row] = col;rows[col] =  1;hills[row - col + 2 * n] = 1;dales[col + row] = 1;}private void removeQueen(int row, int col){queens[row] = 0;rows[col] = 0;hills[row - col + 2 * n] = 0;dales[col + row] = 0;}private void addSolution(){List<String> solution = new ArrayList<>();for(int i = 0; i < n; i ++){int col = queens[i];StringBuilder sb = new StringBuilder();for(int j = 0; j < col; j ++)sb.append(".");sb.append("Q");for(int j = col + 1; j < n; j ++)sb.append(".");solution.add(sb.toString());}output.add(solution);}private void backtrace(int row){for(int col = 0; col < n; col ++){if(isAttack(row, col)){placeQueen(row, col);if(row == n - 1)addSolution();elsebacktrace(row + 1);removeQueen(row, col);}}}
}

这篇关于【N皇后问题】【leetcode51】(Java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755571

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件