实现一个有意义的垂直抽屉(DrawerLayout)

2024-02-28 08:58

本文主要是介绍实现一个有意义的垂直抽屉(DrawerLayout),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要实现上图的效果,看上去还是有一定的难度的,尤其是对于新手。 
今天我们借助一个工具(ViewDragHelper)来快速实现这个功能。

从上面的效果图可以看到这个view有两层,自然想到应该使用的的是自定义viewgroup的。

那么我们就自定义一个viewgroup,源码如下:

public class VDrawerLayout extends ViewGroup {
public VDrawerLayout(Context context) {
   this(context,null);
}

public VDrawerLayout(Context context, AttributeSet attrs) {
    super(context, attrs);
    init();
}

public VDrawerLayout(Context context, AttributeSet attrs, int defStyleAttr) {
    super(context, attrs, defStyleAttr);
    init();
}

private void init(){
    dragHelper= ViewDragHelper.create(this, 2.0f, cb);
    dragHelper.setEdgeTrackingEnabled(ViewDragHelper.EDGE_BOTTOM);
}

}

可以看到这和你平时自定义view没有什么两样,只是在这里我们初始化了一个ViewDragHelper,并且设置其底部的边缘是可以track的,至于这儿出现的cb是ViewDragHelper的回调,待会再详细介绍。

既然是自定义viewgroup就需要重写onMeasure和onlayout方法

 @Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

    mBottomContentView=getChildAt(0);
    mDrawerView=getChildAt(1);

    int measureWidth = MeasureSpec.getSize(widthMeasureSpec);
    int measureHeight = MeasureSpec.getSize(heightMeasureSpec);
    setMeasuredDimension(measureWidth, measureHeight);

    int childCount = getChildCount();
    for (int i = 0; i < childCount; i++) {
        View childView = getChildAt(i);
        //每一个子控件测量大小
        measureChild(childView, widthMeasureSpec, heightMeasureSpec);
    }
}

@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
    mBottomContentView.layout(l,t,r,b);
    mDrawerView.layout(l,t,r,b);
}

代码也很简单了。1,在onMeasure中我们先取出底层的view作为mBottomContentView(即不可以滑动的view)取出上层的view作为mDrawerView(既可以滑动的view),在调用默认的setMeasuredDimension方法设置测绘的尺寸和方式(如对这个方法不了解的请百度,因为两层的view都是全屏的所以这里使用了这个取巧的方法) 
最后再调用两个子控件的测量方法即可。2,在onLayout中直接对两层view进行布局了,由于两个view是重叠的,因此直接传入侧得的l,t,r,b值即可。

下面是重点: 
我们知道viewgroup是没有滚动的,要实现滚动需要重写onInterceptTouchEvent和onTouchEvent方法了,需要实现一堆的逻辑 
,而这里我们借助ViewDragHelper将逻辑简化后代码如下:

@Override
public boolean onInterceptTouchEvent(MotionEvent ev) {
    return dragHelper.shouldInterceptTouchEvent(ev);
}


@Override
public boolean onTouchEvent(MotionEvent event) {
    dragHelper.processTouchEvent(event);
    return true;
}

把所有的滑动都交给ViewDragHelper来处理(其内部已经实现了一个scroller),在适当的时候通过callback让我们来处理,即文章开头提到的cb,下面我们来看一下cb的代码:

 ViewDragHelper.Callback cb=new ViewDragHelperCallBack();
 private class ViewDragHelperCallBack extends ViewDragHelper.Callback {

   @Override
   public boolean tryCaptureView(View child, int pointerId) {
       return child == mDrawerView;
   }

   @Override
   public void onEdgeTouched(int edgeFlags, int pointerId) {
       if (edgeFlags== ViewDragHelper.EDGE_BOTTOM){
           dragHelper.captureChildView(mDrawerView,pointerId);
       }
   }

   @Override
   public int clampViewPositionVertical(View child, int top, int dy) {
       return Math.min(Math.max(top, 0), mDrawerView.getHeight());
   }


   @Override
   public void onViewReleased(View releasedChild, float xvel, float yvel) {
        float movePrecent = (releasedChild.getHeight() + releasedChild.getTop()) / (float) releasedChild.getHeight();
        int finalTop = ( movePrecent < 1.5f) ? 0 : releasedChild.getHeight();
        dragHelper.settleCapturedViewAt(releasedChild.getLeft(), finalTop);
        invalidate();
   }
}

代码依然是很简单的, 
1,首先通过tryCaptureView的返回值告诉ViewDragHelper,当前的view是否是我们需要捕获的view(即用来滑动的drawerview)。 
2,在手指接触Viewgroup的底部时会回调onEdgeTouched方法,我们在这里主动调用ViewDragHelper的captureChildView方法去捕获需要滚动的mDrawerView。 
3,在view垂直滑动的时候会回调clampViewPositionVertical方法,他的返回值决定了view将要移动到的位置,在这儿为了防止过度移动,做了一点范围限制。 
4,在手指抬起的时候会回调onViewReleased方法,在这里我们增加一个逻辑,即当可滑动的view滑动距离大于自生高度的一半时,全部关闭mDrawerView或全部打开mDrawerView。而关闭和打开mDrawerView,则调用的是ViewDragHelper的settleCapturedViewAt方法,该方法内部调用的是Scroller.startScroll方法,因此这里需要再调用 invalidate()方法,同时还需要重写view的computeScroll方法,代码如下;

@Override
public void computeScroll() {
    if (dragHelper.continueSettling(true)) {
        invalidate();
    }
}

到此,整个自定义viewgroup就完成了,怎么样,简单吧。

源码下载
https://github.com/yxkrrhx/VDrawer
 

这篇关于实现一个有意义的垂直抽屉(DrawerLayout)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755002

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp