pandas中高级应用——jupyter

2024-02-28 02:40

本文主要是介绍pandas中高级应用——jupyter,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、pandas绘图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
ts=pd.Series(np.random.randn(1000),index =pd.date_range('1/2/2000',periods=1000))#随机生成1000个数据,index用pandas里日期函数,生成1000个index
ts =ts.cumsum()  #累加,一个数等于之前所有数相加,使数据变得更平滑
ts     #日期+数据  时间序列

在这里插入图片描述

ts.plot(title='pandas plot')
plt.xlabel('x')
plt.ylabel('y')

在这里插入图片描述

df=pd.DataFrame(np.random.randn(1000,4),index =pd.date_range('1/2/2000',periods=1000),columns= list('ABCD'))  #生成4个1000个数据,随时间变化
df.cumsum().plot()  #自动生成四种颜色的数据,累加使数据更光滑,多次执行变成光滑曲线

在这里插入图片描述
指定某一列为X:

df['A']=np.arange(1000)
df['C']

在这里插入图片描述

df.plot(x = 'A',y='C')  #用df里的数据画图,x轴为A,y轴为C列数据

在这里插入图片描述

df.C[:5].plot.bar(rot=20)  #画出C的前5个数据的柱状图,横坐标倾斜20°

在这里插入图片描述

df.C[:5].plot.bar(rot=20,color='purple',title='df.C5')

在这里插入图片描述

二、 数据聚合与分组运算

import numpy as np
import pandas as pd

对数据进行分组是数据分析工作的重要部分,对数据的分析,常常是对数据进行分组统计

分组运算过程: 1、确定分组键—即按照分组键进行分组 2、确定分组操作:即在每个小组上应用哪个函数或运算 3、运算结果合并

注意:分组键可以为:数组、DataFrame的某个列、字典、Seires、索引或者列的函数等等。关键要求分组键要与拆分的对象长度相同

df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(), 'size': list('SSMMMLL'),'weight': [8, 10, 11, 1, 20, 12, 12],'adult' : [False] * 5 + [True] * 2})
# ':'分隔列, .split()分隔' ',数据按顺序排列  多种表示各种数据的方式
df

在这里插入图片描述
计算每种动物的平均重量:

df.groupby('animal')['weight'].mean()   #按每种动物分组,对重量求平均值  分组标准+对组的那一项+操作

在这里插入图片描述
计算每种动物是否成年,计算其平均体重:

data = df.groupby(['animal','adult'])['weight'].mean()  #分组依据有两个
data

在这里插入图片描述

type(data)    # 双重serials序列

在这里插入图片描述
将Series转换为DataFrame

data1 = data.unstack()  #将Series转换为DataFrame
data1

在这里插入图片描述

type(data1)

在这里插入图片描述

df.groupby('animal').size() #统计以animal分组的各组的包含数量 

在这里插入图片描述

df.groupby('animal')['weight'].apply(lambda x : x - x.mean())  #用动物的体重分组,不同体重的放在不同组,每一组的数据为体重减去分组体重平均值
#自己写lambda函数,再apply应用一下

在这里插入图片描述

三、空难数据集处理

找出哪些飞机发生空难的时候,生存率最高

data = pd.read_csv('air1908.csv')
data.head()

在这里插入图片描述

data.columns

在这里插入图片描述

data.tail()

在这里插入图片描述

data.Type

在这里插入图片描述
处理nan值的处理

data[['Fatalities','Aboard','Type']].isnull().sum()

在这里插入图片描述

data = data[['Fatalities','Aboard','Type']].dropna()

处理Type数据,让其规整化

data.Type = data.Type.map(lambda x:x.split()[0]) #取以' '分隔的第一个数据为这个数据  map:映射
data

在这里插入图片描述
想统计各个品牌出现的次数

data.Type.value_counts()  #出现次数太少的去掉

在这里插入图片描述
找出高频率出现前10的品牌

top10 = data.Type.value_counts()[:10].index #切片的表示方法:取出现次数的前10个数据的index
top10

在这里插入图片描述

data.Type.isin(top10)   #成员关系判断  从品牌中找top10的数据  false:不在top10 true:在top10

在这里插入图片描述

data =data[data.Type.isin(top10)] #data中取type在top10的数据
data.Type.unique() #查看唯一值

在这里插入图片描述

data['sv'] =np.round((data.Aboard- data.Fatalities)/ data.Aboard,2) #保留两位小数
data

在这里插入图片描述
每个品牌的平均生存几率

 data[data.Type =='de']['sv'].mean() #品牌的平均死亡率

在这里插入图片描述

data.groupby('Type')['sv'].mean()

在这里插入图片描述

四、小费数据集

import seaborn as sns
import pandas as pd

tips是seaborn中的一个数据集

data = sns.load_dataset('tips')
data

在这里插入图片描述
观察哪些日子给小费

data.day.unique()

在这里插入图片描述

看看哪些餐给小费

data.time.unique()

在这里插入图片描述
计算小费比例

data['rate'] =data.tip/data.total_bill  #增加一列

观察哪个性别给的小费比例高

data.groupby('sex')['rate'].mean()

在这里插入图片描述
观察哪天给的小费比例更高

data.groupby('day')['rate'].mean()

在这里插入图片描述
观察哪天哪个性别给的小费比例更高

data.groupby(['day','sex'])['rate'].mean()

在这里插入图片描述
观察两者的区别

data.groupby(['sex','day'])['rate'].mean()

在这里插入图片描述
可视化

data.groupby(['sex','day'])['rate'].mean().plot.bar(rot=20)

在这里插入图片描述

这篇关于pandas中高级应用——jupyter的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754234

相关文章

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys