【LeetCode刷题】146. LRU 缓存

2024-02-28 02:12
文章标签 leetcode 缓存 刷题 lru 146

本文主要是介绍【LeetCode刷题】146. LRU 缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

思路:这道题的难点在于记录最近最少使用,使用map可以满足get的O(1),但是无法记录最近最少使用的数据;如果使用数组,删除/增加的时间复杂度则是O(n),也不满足。

使用哈希表 + 双向链表可以满足删除/增加的时间复杂度为O(1)。

这个图太形象了。

(1)双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的

(2)哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。

(3)对于 get 操作,首先判断 key 是否存在:

        (a)如果 key 不存在,则返回 −1;

        (b)如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值。

(3)对于 put 操作,首先判断 key 是否存在:

        (a)如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;

        (b)如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。

思路很清晰

代码实现

struct DLinkedNode {int key, value;DLinkedNode* prev;DLinkedNode* next;DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {}DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, DLinkedNode*> cache;DLinkedNode* head;DLinkedNode* tail;int size;int capacity;public:LRUCache(int _capacity): capacity(_capacity), size(0) {// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head->next = tail;tail->prev = head;}int get(int key) {if (!cache.count(key)) {return -1;}// 如果 key 存在,先通过哈希表定位,再移到头部DLinkedNode* node = cache[key];moveToHead(node);return node->value;}void put(int key, int value) {if (!cache.count(key)) {// 如果 key 不存在,创建一个新的节点DLinkedNode* node = new DLinkedNode(key, value);// 添加进哈希表cache[key] = node;// 添加至双向链表的头部addToHead(node);++size;if (size > capacity) {// 如果超出容量,删除双向链表的尾部节点DLinkedNode* removed = removeTail();// 删除哈希表中对应的项cache.erase(removed->key);// 防止内存泄漏delete removed;--size;}}else {// 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部DLinkedNode* node = cache[key];node->value = value;moveToHead(node);}}void addToHead(DLinkedNode* node) {node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}void removeNode(DLinkedNode* node) {node->prev->next = node->next;node->next->prev = node->prev;}void moveToHead(DLinkedNode* node) {removeNode(node);addToHead(node);}DLinkedNode* removeTail() {DLinkedNode* node = tail->prev;removeNode(node);return node;}
};

参考:【字节一面】 LRU Cache 实现剖析_哔哩哔哩_bilibili

链接:. - 力扣(LeetCode)

这篇关于【LeetCode刷题】146. LRU 缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754180

相关文章

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Nacos客户端本地缓存和故障转移方式

《Nacos客户端本地缓存和故障转移方式》Nacos客户端在从Server获得服务时,若出现故障,会通过ServiceInfoHolder和FailoverReactor进行故障转移,ServiceI... 目录1. ServiceInfoHolder本地缓存目录2. FailoverReactorinit

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists