本文主要是介绍【LeetCode刷题】146. LRU 缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4]解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
思路:这道题的难点在于记录最近最少使用,使用map可以满足get的O(1),但是无法记录最近最少使用的数据;如果使用数组,删除/增加的时间复杂度则是O(n),也不满足。
使用哈希表 + 双向链表可以满足删除/增加的时间复杂度为O(1)。
这个图太形象了。
(1)双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
(2)哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。
(3)对于 get 操作,首先判断 key 是否存在:
(a)如果 key 不存在,则返回 −1;
(b)如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值。
(3)对于 put 操作,首先判断 key 是否存在:
(a)如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;
(b)如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。
思路很清晰
代码实现
struct DLinkedNode {int key, value;DLinkedNode* prev;DLinkedNode* next;DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {}DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, DLinkedNode*> cache;DLinkedNode* head;DLinkedNode* tail;int size;int capacity;public:LRUCache(int _capacity): capacity(_capacity), size(0) {// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head->next = tail;tail->prev = head;}int get(int key) {if (!cache.count(key)) {return -1;}// 如果 key 存在,先通过哈希表定位,再移到头部DLinkedNode* node = cache[key];moveToHead(node);return node->value;}void put(int key, int value) {if (!cache.count(key)) {// 如果 key 不存在,创建一个新的节点DLinkedNode* node = new DLinkedNode(key, value);// 添加进哈希表cache[key] = node;// 添加至双向链表的头部addToHead(node);++size;if (size > capacity) {// 如果超出容量,删除双向链表的尾部节点DLinkedNode* removed = removeTail();// 删除哈希表中对应的项cache.erase(removed->key);// 防止内存泄漏delete removed;--size;}}else {// 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部DLinkedNode* node = cache[key];node->value = value;moveToHead(node);}}void addToHead(DLinkedNode* node) {node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}void removeNode(DLinkedNode* node) {node->prev->next = node->next;node->next->prev = node->prev;}void moveToHead(DLinkedNode* node) {removeNode(node);addToHead(node);}DLinkedNode* removeTail() {DLinkedNode* node = tail->prev;removeNode(node);return node;}
};
参考:【字节一面】 LRU Cache 实现剖析_哔哩哔哩_bilibili
链接:. - 力扣(LeetCode)
这篇关于【LeetCode刷题】146. LRU 缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!