【医学影像】LIDC-IDRI数据集的无痛制作

2024-02-27 07:12

本文主要是介绍【医学影像】LIDC-IDRI数据集的无痛制作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LIDC-IDRI数据集制作

    • 0.下载
      • 0.0 链接汇总
      • 0.1 步骤
    • 1.合成CT图
    • reference

0.下载

0.0 链接汇总

  • LIDC-IDRI官方网址:https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteria=LIDC-IDRI
  • NBIA Data Retriever 下载链接:https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images

0.1 步骤

  1. 检索
    分成两种,Simple Search一个是多种关键字筛选,鉴定为没用。
    在这里插入图片描述
    直接用Text Search ,将annotation的ID输上,点击search
    在这里插入图片描述
  2. 加入Cart
    检索出来会有好几种模态/任务的数据,选择自己需要点击购物车加入Cart。
    例如:我是做CT分割,故只选择模态为CT的那个数据。
    在这里插入图片描述
    重复Text检索步骤,得到最终自己需要的所有Cart:
    在这里插入图片描述
  3. 下载
  • 安装好NBIA Data Retriever
    前面链接下载,或者Download->Get NBIA Data Retriever 下载,有官方指引。
    在这里插入图片描述

  • 生成manifest文件
    在这里插入图片描述

  • 下载

设置好路径,点击start
在这里插入图片描述

1.合成CT图

这边是直接偷了NaviAirwayi的代码进行dicom文件merge成nii文件。
文件结构需要为:
在这里插入图片描述

如果按照之前步骤进行下载的话,获得的文件就是上述结构。只是子文件名称会因为太长而被修改,不过不影响结果,最终生成文件名是按照一级目录命名。
在这里插入图片描述

预处理代码完整如下:

import numpy as np
import os
import SimpleITK as sitk
from PIL import Image
import pydicom
import cv2
import nibabel as nib
import pydicom## funtion
#####-----------------------------------------------------------------------def loadFile(filename):ds = sitk.ReadImage(filename)#pydicom.dcmread(filename)img_array = sitk.GetArrayFromImage(ds)frame_num, width, height = img_array.shape#print("frame_num, width, height: "+str((frame_num, width, height)))return img_array, frame_num, width, height'''
def loadFileInformation(filename):information = {}ds = pydicom.read_file(filename)information['PatientID'] = ds.PatientIDinformation['PatientName'] = ds.PatientNameinformation['PatientSex'] = ds.PatientSexinformation['StudyID'] = ds.StudyIDinformation['StudyDate'] = ds.StudyDateinformation['StudyTime'] = ds.StudyTimeinformation['Manufacturer'] = ds.Manufacturerreturn information
'''def get_3d_img_for_one_case(img_path_list, img_format="dcm"):img_3d=[]for idx, img_path in enumerate(img_path_list):print("progress: "+str(idx/len(img_path_list))+"; "+str(img_path), end="\r")img_slice, frame_num, _, _ = loadFile(img_path)assert frame_num==1img_3d.append(img_slice)img_3d=np.array(img_3d)return img_3d.reshape(img_3d.shape[0], img_3d.shape[2], img_3d.shape[3])
#####-----------------------------------------------------------------------# the path to LIDC-IDRI raw imagesLIDC_IDRI_raw_path = "G:\BAS_test_raw\manifest-1708937949454\LIDC-IDRI"LIDC_IDRI_raw_img_dict = {}
img_names = os.listdir(LIDC_IDRI_raw_path)
img_names.sort()
img_namespath_to_a_case = ""def find_imgs(input_path):global path_to_a_caseitems = os.listdir(input_path)items.sort()# print("There are "+str(items)+" in "+str(input_path))All_file_flag = Truefor item in items:if os.path.isdir(input_path + "/" + item):All_file_flag = Falsebreakif All_file_flag and len(items) > 10:# print("we get "+str(input_path))path_to_a_case = input_pathelse:for item in items:if os.path.isdir(input_path + "/" + item):# print("open filefloder: "+str(input_path+"/"+item))find_imgs(input_path + "/" + item)for idx, img_name in enumerate(img_names):print(idx / len(img_names), end="\r")find_imgs(LIDC_IDRI_raw_path + "/" + img_name)slice_names = os.listdir(path_to_a_case)slice_names.sort()LIDC_IDRI_raw_img_dict[img_name] = []for slice_name in slice_names:if slice_name.split(".")[1] == "dcm":LIDC_IDRI_raw_img_dict[img_name].append(path_to_a_case + "/" + slice_name)print("Show the case names: "+str(LIDC_IDRI_raw_img_dict.keys()))# set output pathoutput_image_path = r"G:\myBAS\test\images"
if not os.path.exists(output_image_path):os.mkdir(output_image_path)for case in LIDC_IDRI_raw_img_dict.keys():img_3d = get_3d_img_for_one_case(LIDC_IDRI_raw_img_dict[case])sitk.WriteImage(sitk.GetImageFromArray(img_3d),output_image_path + "/" + case + ".nii.gz")

今天折腾了半死,希望对大家有帮助。

reference

refer1

这篇关于【医学影像】LIDC-IDRI数据集的无痛制作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751582

相关文章

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS