【医学影像】LIDC-IDRI数据集的无痛制作

2024-02-27 07:12

本文主要是介绍【医学影像】LIDC-IDRI数据集的无痛制作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LIDC-IDRI数据集制作

    • 0.下载
      • 0.0 链接汇总
      • 0.1 步骤
    • 1.合成CT图
    • reference

0.下载

0.0 链接汇总

  • LIDC-IDRI官方网址:https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteria=LIDC-IDRI
  • NBIA Data Retriever 下载链接:https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images

0.1 步骤

  1. 检索
    分成两种,Simple Search一个是多种关键字筛选,鉴定为没用。
    在这里插入图片描述
    直接用Text Search ,将annotation的ID输上,点击search
    在这里插入图片描述
  2. 加入Cart
    检索出来会有好几种模态/任务的数据,选择自己需要点击购物车加入Cart。
    例如:我是做CT分割,故只选择模态为CT的那个数据。
    在这里插入图片描述
    重复Text检索步骤,得到最终自己需要的所有Cart:
    在这里插入图片描述
  3. 下载
  • 安装好NBIA Data Retriever
    前面链接下载,或者Download->Get NBIA Data Retriever 下载,有官方指引。
    在这里插入图片描述

  • 生成manifest文件
    在这里插入图片描述

  • 下载

设置好路径,点击start
在这里插入图片描述

1.合成CT图

这边是直接偷了NaviAirwayi的代码进行dicom文件merge成nii文件。
文件结构需要为:
在这里插入图片描述

如果按照之前步骤进行下载的话,获得的文件就是上述结构。只是子文件名称会因为太长而被修改,不过不影响结果,最终生成文件名是按照一级目录命名。
在这里插入图片描述

预处理代码完整如下:

import numpy as np
import os
import SimpleITK as sitk
from PIL import Image
import pydicom
import cv2
import nibabel as nib
import pydicom## funtion
#####-----------------------------------------------------------------------def loadFile(filename):ds = sitk.ReadImage(filename)#pydicom.dcmread(filename)img_array = sitk.GetArrayFromImage(ds)frame_num, width, height = img_array.shape#print("frame_num, width, height: "+str((frame_num, width, height)))return img_array, frame_num, width, height'''
def loadFileInformation(filename):information = {}ds = pydicom.read_file(filename)information['PatientID'] = ds.PatientIDinformation['PatientName'] = ds.PatientNameinformation['PatientSex'] = ds.PatientSexinformation['StudyID'] = ds.StudyIDinformation['StudyDate'] = ds.StudyDateinformation['StudyTime'] = ds.StudyTimeinformation['Manufacturer'] = ds.Manufacturerreturn information
'''def get_3d_img_for_one_case(img_path_list, img_format="dcm"):img_3d=[]for idx, img_path in enumerate(img_path_list):print("progress: "+str(idx/len(img_path_list))+"; "+str(img_path), end="\r")img_slice, frame_num, _, _ = loadFile(img_path)assert frame_num==1img_3d.append(img_slice)img_3d=np.array(img_3d)return img_3d.reshape(img_3d.shape[0], img_3d.shape[2], img_3d.shape[3])
#####-----------------------------------------------------------------------# the path to LIDC-IDRI raw imagesLIDC_IDRI_raw_path = "G:\BAS_test_raw\manifest-1708937949454\LIDC-IDRI"LIDC_IDRI_raw_img_dict = {}
img_names = os.listdir(LIDC_IDRI_raw_path)
img_names.sort()
img_namespath_to_a_case = ""def find_imgs(input_path):global path_to_a_caseitems = os.listdir(input_path)items.sort()# print("There are "+str(items)+" in "+str(input_path))All_file_flag = Truefor item in items:if os.path.isdir(input_path + "/" + item):All_file_flag = Falsebreakif All_file_flag and len(items) > 10:# print("we get "+str(input_path))path_to_a_case = input_pathelse:for item in items:if os.path.isdir(input_path + "/" + item):# print("open filefloder: "+str(input_path+"/"+item))find_imgs(input_path + "/" + item)for idx, img_name in enumerate(img_names):print(idx / len(img_names), end="\r")find_imgs(LIDC_IDRI_raw_path + "/" + img_name)slice_names = os.listdir(path_to_a_case)slice_names.sort()LIDC_IDRI_raw_img_dict[img_name] = []for slice_name in slice_names:if slice_name.split(".")[1] == "dcm":LIDC_IDRI_raw_img_dict[img_name].append(path_to_a_case + "/" + slice_name)print("Show the case names: "+str(LIDC_IDRI_raw_img_dict.keys()))# set output pathoutput_image_path = r"G:\myBAS\test\images"
if not os.path.exists(output_image_path):os.mkdir(output_image_path)for case in LIDC_IDRI_raw_img_dict.keys():img_3d = get_3d_img_for_one_case(LIDC_IDRI_raw_img_dict[case])sitk.WriteImage(sitk.GetImageFromArray(img_3d),output_image_path + "/" + case + ".nii.gz")

今天折腾了半死,希望对大家有帮助。

reference

refer1

这篇关于【医学影像】LIDC-IDRI数据集的无痛制作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751582

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram