paddle 图像分割学习总结

2024-02-27 01:58

本文主要是介绍paddle 图像分割学习总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、图像分割综述
  • 二、FCN
  • U-Net
  • PSPNet
  • DeepLab


前言

课程链接:https://aistudio.baidu.com/aistudio/course/introduce/1767


提示:以下是本篇文章正文内容

一、图像分割综述

根据 不同的任务和数据类型:

-图像分割(image segmentation)(像素级分类)

  • 图像语义分割(image semantic segmentation)
  • 图像实例分割(image instance segmentation)
  • 图像全景分割(image panoptic segmentation)
  • 视频目标分割(video object segmentation)
  • 视频实例分割(video instance segmentation)

示例:

  • 语义分割:给每个pixel分类
  • 实例分割:给每个筐里的object分mask
  • 全景分割:背景pixel分类+框里mask
  • VOS :通常会给定目标的mask,求特定目标的mask
  • VIS :根据目标检测的框,求目标的mask
    在这里插入图片描述

分割网络的评价指标:mIoU 和 mAcc

  • mean intersection-over-unio
    分割每一类别的交并比
  • mean accuracy
    分对的像素 / 所有像素

二、FCN

网络结构:
在这里插入图片描述

代码如下(示例):

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
from paddle.fluid.dygraph import Conv2D
from paddle.fluid.dygraph import Conv2DTranspose
from paddle.fluid.dygraph import Dropout
from paddle.fluid.dygraph import BatchNorm
from paddle.fluid.dygraph import Pool2D
from paddle.fluid.dygraph import Linear
# from vgg import VGG16BNclass VGG(fluid.dygraph.Layer):def __init__(self, layers=16, use_bn=False, num_classes=1000):super(VGG, self).__init__()self.layers = layersself.use_bn = use_bnsupported_layers = [16, 19]assert layers in supported_layersif layers == 16:depth = [2, 2, 3, 3, 3]elif layers == 19:depth = [2, 2, 4, 4, 4]num_channels = [3, 64, 128, 256, 512]num_filters = [64, 128, 256, 512, 512]self.layer1 = fluid.dygraph.Sequential(*self.make_layer(num_channels[0], num_filters[0], depth[0], use_bn, name='layer1'))self.layer2 = fluid.dygraph.Sequential(*self.make_layer(num_channels[1], num_filters[1], depth[1], use_bn, name='layer2'))self.layer3 = fluid.dygraph.Sequential(*self.make_layer(num_channels[2], num_filters[2], depth[2], use_bn, name='layer3'))self.layer4 = fluid.dygraph.Sequential(*self.make_layer(num_channels[3], num_filters[3], depth[3], use_bn, name='layer4'))self.layer5 = fluid.dygraph.Sequential(*self.make_layer(num_channels[4], num_filters[4], depth[4], use_bn, name='layer5'))self.classifier = fluid.dygraph.Sequential(Linear(input_dim=512 * 7 * 7, output_dim=4096, act='relu'),Dropout(),Linear(input_dim=4096, output_dim=4096, act='relu'),Dropout(),Linear(input_dim=4096, output_dim=num_classes))self.out_dim = 512 * 7 * 7def forward(self, inputs):x = self.layer1(inputs)x = fluid.layers.pool2d(x, pool_size=2, pool_stride=2)x = self.layer2(x)x = fluid.layers.pool2d(x, pool_size=2, pool_stride=2)x = self.layer3(x)x = fluid.layers.pool2d(x, pool_size=2, pool_stride=2)x = self.layer4(x)x = fluid.layers.pool2d(x, pool_size=2, pool_stride=2)x = self.layer5(x)x = fluid.layers.pool2d(x, pool_size=2, pool_stride=2)x = fluid.layers.adaptive_pool2d(x, pool_size=(7,7), pool_type='avg')x = fluid.layers.reshape(x, shape=[-1, self.out_dim])x = self.classifier(x)return xclass FCN8s(fluid.dygraph.Layer):# TODO: create fcn8s modeldef __init__(self, num_classes=59):super(FCN8s, self).__init__()self.num_classes = num_classesself.layer1 = fluid.dygraph.Sequential(Conv2D(num_channels=3, num_filters=64, filter_size=3, padding=1),BatchNorm(num_channels=64, act='relu'),Conv2D(num_channels=64, num_filters=64, filter_size=3, padding=1),BatchNorm(num_channels=64, act='relu'),Pool2D(pool_size=2, pool_stride=2, pool_type='max')) # 1/ 2self.layer2 = fluid.dygraph.Sequential(Conv2D(num_channels=64, num_filters=128, filter_size=3, padding=1),BatchNorm(num_channels=128, act='relu'),Conv2D(num_channels=128, num_filters=128, filter_size=3, padding=1),BatchNorm(num_channels=128, act='relu'),Pool2D(pool_size=2, pool_stride=2, pool_type='max')) # 1/ 4self.layer3 = fluid.dygraph.Sequential(Conv2D(num_channels=128, num_filters=256, filter_size=3, padding=1),BatchNorm(num_channels=256, act='relu'),Conv2D(num_channels=256, num_filters=256, filter_size=3, padding=1),BatchNorm(num_channels=256, act='relu'),Conv2D(num_channels=256, num_filters=256, filter_size=3, padding=1),BatchNorm(num_channels=256, act='relu'),Pool2D(pool_size=2, pool_stride=2, pool_type='max')) # 1 / 8self.layer4 = fluid.dygraph.Sequential(Conv2D(num_channels=256, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Conv2D(num_channels=512, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Conv2D(num_channels=512, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Pool2D(pool_size=2, pool_stride=2, pool_type='max')) # 1 / 16self.layer5 = fluid.dygraph.Sequential(Conv2D(num_channels=512, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Conv2D(num_channels=512, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Conv2D(num_channels=512, num_filters=512, filter_size=3, padding=1),BatchNorm(num_channels=512, act='relu'),Pool2D(pool_size=2, pool_stride=2, pool_type='max')) # 1 / 32self.conv67 = fluid.dygraph.Sequential(Conv2D(num_channels=512, num_filters=512, filter_size=1),BatchNorm(num_channels=512, act='relu'),Conv2D(num_channels=512, num_filters=512, filter_size=1),BatchNorm(num_channels=512, act='relu'))self.conv = Conv2D(num_channels=512, num_filters=self.num_classes, filter_size=1)def forward(self, inputs):x = self.layer1(inputs)x = self.layer2(x)x = self.layer3(x)pool3 = x # 1/8 256x = self.layer4(x)pool4 = x # 1/16 512x = self.layer5(x)x = self.conv67(x)x = fluid.layers.interpolate(x, pool4.shape[2:])x = fluid.layers.elementwise_add(pool4, x)x = fluid.layers.interpolate(x, pool3.shape[2:])pool3 = Conv2D(num_channels= 256, num_filters=512, filter_size=1, act='relu')(pool3)x = fluid.layers.elementwise_add(pool3, x)x = fluid.layers.interpolate(x, inputs.shape[2:])x = self.conv(x)return xdef main():with fluid.dygraph.guard():x_data = np.random.rand(2, 3, 512, 512).astype(np.float32)x = to_variable(x_data)model = FCN8s(num_classes=59)model.eval()pred = model(x)print(pred.shape)if __name__ == '__main__':main()

U-Net

网络结构:

  • 采用编码器和解码器的U形结构
  • 输入输出大小不变
  • skip结合方式:concatenation
    在这里插入图片描述

Paper Title: U-net:Convolutional networks for biomedical image segmentaion

在这里插入图片描述

PSPNet

psp模块
在这里插入图片描述

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
from paddle.fluid.dygraph import Layer
from paddle.fluid.dygraph import Conv2D
from paddle.fluid.dygraph import BatchNorm
from paddle.fluid.dygraph import Dropout
from resnet_dilated import ResNet50# pool with different bin_size
# interpolate back to input size
# concat
class PSPModule(Layer):def __init__(self, num_channels, bin_size_list):super(PSPModule, self).__init__()self.bin_size_list = bin_size_listnum_filters = num_channels // len(bin_size_list)self.features = []for i in range(len(bin_size_list)):self.features.append(fluid.dygraph.Sequential(Conv2D(num_channels, num_filters, 1),BatchNorm(num_filters, act='relu')))def forward(self, inputs):out = [inputs]for idx, f in enumerate(self.features):x = fluid.layers.adaptive_pool2d(inputs, self.bin_size_list[idx])x = f(x)x = fluid.layers.interpolate(x, inputs.shape[2:], align_corners=True)out.append(x)out = fluid.layers.concat(out, axis=1)return outclass PSPNet(Layer):def __init__(self, num_classes=59, backbone='resnet50'):super(PSPNet, self).__init__()res = ResNet50()# stem: res.conv, res.pool2d_maxself.layer0 = fluid.dygraph.Sequential(res.conv,res.pool2d_max)self.layer1 = res.layer1self.layer2 = res.layer2self.layer3 = res.layer3self.layer4 = res.layer4num_channels = 2048# psp: 2048 -> 2048*2self.pspmodule = PSPModule(num_channels, [1,2,3,6])num_channels *= 2# cls: 2048*2 -> 512 -> num_classesself.classifier = fluid.dygraph.Sequential(Conv2D(num_channels = num_channels, num_filters=512, filter_size=3, padding=1),BatchNorm(512, act = 'relu'),Dropout(0.1),Conv2D(num_channels=512, num_filters=num_classes, filter_size=1))# aux: 1024 -> 256 -> num_classesdef forward(self, inputs):# aux: tmp_x = layer3x = self.layer0(inputs)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)aux = xx = self.layer4(x)x = self.pspmodule(x)x = self.classifier(x)x = fluid.layers.interpolate(x, inputs.shape[2:])return x, auxdef main():with fluid.dygraph.guard(fluid.CPUPlace()):x_data=np.random.rand(2,3, 473, 473).astype(np.float32)x = to_variable(x_data)model = PSPNet(num_classes=59)model.train()pred, aux = model(x)print(pred.shape, aux.shape)if __name__ =="__main__":main()

DeepLab

aspp模块升级版
在这里插入图片描述

class ASPPPooling(Layer):# TODO:def __init__(self, num_channels, num_filters):super(ASPPPooling, self).__init__()self.features = fluid.dygraph.Sequential(Conv2D(num_channels, num_filters, 1),BatchNorm(num_filters, act='relu'))def forward(self, inputs):n, c, h, w = inputs.shapex = fluid.layers.adaptive_pool2d(inputs, 1)x = self.features(x)x = fluid.layers.interpolate(x, [h, w])return xclass ASPPConv(fluid.dygraph.Sequential):# TODO:def __init__(self, num_channels, num_filters, dilation):super(ASPPConv, self).__init__(Conv2D(num_channels=num_channels, num_filters=num_filters, filter_size=3, padding=dilation, dilation=dilation),BatchNorm(num_filters, act='relu'))class ASPPModule(Layer):# TODO: def __init__(self, num_channels, num_filters, rates):super(ASPPModule, self).__init__()self.features = []self.features.append(fluid.dygraph.Sequential(Conv2D(num_channels, num_filters, 1),BatchNorm(num_filters, act='relu')))self.features.append(ASPPPooling(num_channels, num_filters))    for r in rates:self.features.append(ASPPConv(num_channels, num_filters, r))self.project = fluid.dygraph.Sequential(Conv2D(1280, 256, 1),BatchNorm(256, act='relu'))def forward(self, inputs):res = []for f in self.features:res.append(f(inputs))x = fluid.layers.concat(res, axis=1)x = self.project(x)return xclass DeepLabHead(fluid.dygraph.Sequential):def __init__(self, num_channels, num_classes):super(DeepLabHead, self).__init__(ASPPModule(num_channels, 256, [12, 24, 36]),Conv2D(256, 256, 3, padding=1),BatchNorm(256, act='relu'),Conv2D(256, num_classes, 1))class DeepLab(Layer):# TODO:def __init__(self, num_classes=59):super(DeepLab, self).__init__()bone = ResNet50(pretrained=False, duplicate_blocks=True)self.layer0 = fluid.dygraph.Sequential(bone.conv,bone.pool2d_max)self.layer1 = bone.layer1self.layer2 = bone.layer2self.layer3 = bone.layer3self.layer4 = bone.layer4#multi gridself.layer5 = bone.layer5self.layer6 = bone.layer6self.layer7 = bone.layer7# feature_dim = 2048self.classifier = DeepLabHead(2048, 59)def forward(self, inputs):n, c, h, w = inputs.shapex = self.layer0(inputs)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.layer5(x)x = self.layer6(x)x = self.layer7(x)x = self.classifier(x)x = fluid.layers.interpolate(x, [h, w], align_corners=False)return x

这篇关于paddle 图像分割学习总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750881

相关文章

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示